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Abstract: This paper is directed at the important contribution to fluid dynamics made by Sebri Ergun. In his three papers 

published in 1949, 1951 and 1952, using various gases as his percolating fluid, Ergun used his empirical permeability results of 

packing conduits with fractured coke (irregularly shaped particles), in combination with some theoretical concepts, to generate 

an equation which captured the viscous and kinetic contributions to packed conduit permeability in two separate terms in that 

equation, resulting in his now famous “Ergun Equation”. In addition, he identified a discrete “constant” for each of the terms 

which we label herein the “viscous” and “kinetic” constants, respectively. We demonstrate herein, however, that the values 

assigned by Ergun to both his constants are not certifiable and, thus, are problematic in predicting the permeability of packed 

conduits. Moreover, since the publication of his 1952 paper, in which he disclosed the values of 150 and 1.75 for the viscous 

and kinetic constants, respectively, many scholarly works have been published which claim to validate these values. As a 

result, these values have become erroneously embedded in conventional folklore concerning fluid flow in closed conduits and 

have enjoyed widespread acceptance as being a legitimate feature of fluid dynamics dogma. With the advent recently of 

Quinn’s Law, a novel approach to the understanding of fluid flow in closed conduits, we are able to articulate in a manner not 

heretofore possible, the significance of this discrepancy in Ergun’s values of the constants, which we demonstrate is far too 

important to ignore. 

Keywords: Viscous Constant, Kinetic Constant, Ergun Equation, Friction Factor, Transition Region, Turbulent Flow,  

Wall Effect, Boundary Layer 

 

1. Introduction 

We begin by defining the problem in light of the recent 

publication of Quinn’s Law which, for the first time, provides 

a comprehensive analytical road map for the comparison of 

packed conduit permeability both in the laminar and 

turbulent regions of the fluid flow regime. This is a critical 

feature of Quinn’s Law, since the Ergun equation is supposed 

to be accurate over the entire range of the fluid flow regime, 

because one can now use the permeability of an empty 

conduit as an independent reference point against which one 

can titrate the permeability results for packed conduits across 

the entire spectrum of the fluid flow regime. Furthermore, we 

will establish the magnitude of the problem posed by the 

erroneous values of the constants in Ergun’s equation, by 

showing a comparison between the dictates of Quinn’s Law 

for a typical packed conduit in routine use today for HPLC 

(High Pressure Liquid Chromatography) analyses [1], and the 

Ergun equation, both in the laminar (linear) and turbulent 

(non-linear) regions of the fluid flow regime [2-4]. 

Let us consider, therefore, a worked example in which a 

conduit packed with spherical rigid particles to an external 

porosity of 0.40 (a measure of its packing density). This is a 

typical packed conduit in use today in major pharmaceutical 

companies for the analysis of routine samples in the drug 

discovery market segment. Let us assume also that we are 

pumping water through the packed conduit at such a rate that 

we cover a range of modified Reynolds number values 

between 0.1 (laminar) and 120,000 (turbulent). We show this 

scenario in Figure 1. 
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Figure 1. Permeability Comparison. 

As shown in Figure 1, we have captured the permeability 

profile for this worked example based upon the dictates of 

both the Ergun equation and Quinn’s Law, showing the 

pressure gradient in units of psi/cm on the y-axis and the 

dimensionless modified Reynolds number on the x-axis. It is 

obvious from the plot that the Ergun equation understates the 

pressure drop across the conduit as compared to Quinn’s 

Law. Moreover, the discrepancy between the two models 

becomes significantly greater with higher values of the 

modified Reynolds number. Indeed, we can see that the 

difference in the total pressure drop varies from 600 psi 

(approx.) at the lowest value of the Reynolds number (0.1), 

to 60,000,000 psi (approx.) at the highest value of the 

modified Reynolds number. Thus, it is not an overstatement 

to assert that, if validated, this discrepancy is too important to 

ignore. 

We may now pose the question; which fluid flow model is 

to be believed and what are the fundamental differences 

between the two? To answer this question we turn to the 

empirical evidence. 

2. Methods 

We have chosen a very specialized experimental setup to 

carry out the validation of Quinn’s Law vis-a-vis the Ergun 

equation for packed conduits. It will become increasingly 

apparent below why the experimental methodology is so 

specialized and why, in particular, we have avoided the usual 

experimental methodology, which invariably is the root cause 

of the erroneous assertions regarding the value of the 

constants found throughout the literature of packed conduit 

permeability. 

2.1. Experimental Setup 

Our experimental apparatus was assembled as a prototype 

instrument designed for doing continuous flow chemistry. It 

consists of a fluid flow loop with calibrated pressure 

transducers for measuring pressure drop; several rtds along 

the pipe flow loop to monitor temperature at different 

locations; a circular gear pump to provide fluid flow up to a 

maximum of 200 psi; a computerized control system running 

LabView software manufactured by National Instruments. 

Large plastic reservoirs were filled with water at room 

temperature and the water was continuously recycled 

throughout the experiments. Graduated cylinders were used 

in conjunction with the stop watch in the computer to 

accurately measure the fluid flow rate. The voltage of the 

power supply controlling the gear pump was set in the 

software, and for each flow rate measurement, the 

temperature and pressure drop across the packed conduit was 

recorded. 

The packed conduit used in these experiments is very 

unique and designed especially for the purpose of this 

publication study. It consists of a conduit made of PFA 

plastic into which totally spherical stainless steel electro-

polished ball bearings were packed. The ball bearings were 

each placed one-by-one into the conduit by hand. The 

diameter of the ball bearings was 0.329 cm and the diameter 

of the conduit was 0.368 cm. A total of four different conduit 

nominal lengths were packed, 20, 40, 60 and 100 cm, and 

their permeability measured. For each packed conduit, the 

number of stainless steel ball bearings was counted and the 

column length was defined accordingly i.e., the plastic 

conduit was cut off at this corresponding length of bed 

height. Consequently, the length of the packed conduit was 

validated by the number of particles packed therein, which 

was always an exact integer, i.e., no partial particles. 

Thus, because the particle diameter was just slightly less 

than the conduit diameter, each particle sat on top of one 

other and the column length was therefore equivalent to the 

total number of particles multiplied by the average spherical 

diameter equivalent of an individual particle. The size 

distribution of the particle diameters at this magnitude of 
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value was extremely low, as documented by caliper 

measurements and, therefore, the average particle diameter, 

dp, and the number of particles packed into the conduit, np, 

were calibrated against one another. Accordingly, the exact 

column lengths were; 56 × 0.329=18.43 cm; 114 × 

0.329=37.52 cm; 173 × 0.329=56.94 cm; 297 × 0.329=97.75 

cm, which corresponds to packed conduits containing, 56, 

114, 173, and 297 individual steel ball bearings, respectively. 

This methodology of preparing the packed conduits for 

this study is critical because it eliminates any potential error 

in the values of the combination of average spherical particle 

diameter equivalent, dp, packed conduit external porosity 

(packing density), ε0, and the number of particles, np, packed 

into the conduit under study. Furthermore, it guarantees that 

the external porosity is identical in each of the four packed 

conduits in this study. Thus, the value of the external porosity 

was ε0=0.467 for these experiments. This experimental 

protocol is important because, as we shall demonstrate below, 

this combination of values is critical in establishing a 

correlation between measured and calculated values, 

especially in the nonlinear portion of the fluid flow regime, 

when using theoretical fluid flow models and measured 

permeability based upon measured variables for packed 

conduits. 

 

Figure 2. Photograph of fluidics module. 

The particles were retained in the packed conduits by 

coarse retaining stainless steel screens at both ends. We were 

careful to measure the pressure drop across these retaining 

screens and subtract it from the total measured pressure drop 

for each conduit. In addition, the use of four different packed 

conduit lengths validates the contribution of the end-fitting 

screens. 

We show three photographs of the experimental set up; 

Figure 2 is the fluidics module; Figure 3 is the packed 

conduit used; Figure 4 is the electronics module and 

computer control unit. 

 

Figure 3. Photograph of Packed Conduit. 

 

Figure 4. Photograph of Electronics and computer control module. 

A total of approximately 100 separate measurements were 

taken and the results are tabulated in Table 1. 

Table 1. Measured Results. 

Voltage 
 

Q Temp ∆P 
 

Q Temp ∆P 

    
Actual 

   
Actual 

volts 
 

ml/min °C psi 
 

ml/min °C psi 

0.40 60 cm 66 19 3 40 cm 36 19 1 

0.50 
 

80 19 4 
 

46 19 1 

0.60 
 

98 19 6 
 

57 19 1 

0.70 
 

115 19 8 
 

65 19 2 

0.80 
 

130 19 9 
 

77 19 2 

0.90 
 

145 19 12 
 

88 19 3 

1.00 
 

160 19 14 
 

97 19 4 

1.10 
 

175 19 17 
 

107 19 4 

1.20 
 

190 19 19 
 

120 19 5 

1.30 
 

205 19 23 
 

130 19 6 

1.40 
 

220 19 26 
 

145 19 8 

1.50 
 

235 19 29 
 

158 19 9 
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Voltage 
 

Q Temp ∆P 
 

Q Temp ∆P 

    
Actual 

   
Actual 

volts 
 

ml/min °C psi 
 

ml/min °C psi 

0.40 60 cm 66 19 3 40 cm 36 19 1 

1.60 
 

250 19 33 
 

174 19 11 

1.70 
 

265 19 37 
 

183 19 12 

1.80 
 

275 19 40 
 

200 19 14 

1.90 
 

290 19 44 
 

215 19 16 

2.00 
 

305 19 49 
 

225 19 18 

2.10 
 

320 19 53 
 

238 19 20 

2.20 
 

335 19 58 
 

255 19 23 

2.30 
 

350 19 64 
 

270 19 25 

2.40 
 

360 19 67 
 

280 19 27 

2.50 
 

375 19 73 
 

300 19 31 

2.60 
 

387 19 77 
 

306 19 32 

2.70 
 

405 19 84 
 

325 19 36 

2.80 
 

420 19 91 
 

335 19 38 

2.90 
 

430 19 95 
 

350 19 42 

3.00 
 

437 19 98 
 

360 19 44 

Table 1. Continued. 

Voltage 
 

Q Temp ∆P 
 

Q Temp ∆P 

    
Actual 

   
Actual 

volts 
 

ml/min °C psi 
 

ml/min °C psi 

0.40 20 cm 52 19 1 100 cm 55 19 3 

0.50 
 

65 19 1 
 

69 19 5 

0.60 
 

78 19 1 
 

83 19 7 

0.70 
 

92 19 2 
 

96 19 9 

0.80 
 

105 19 2 
 

109 19 12 

0.90 
 

116 19 2 
 

125 19 15 

1.00 
 

125 19 3 
 

136 19 18 

1.10 
 

135 19 3 
 

150 19 21 

1.20 
 

150 19 4 
 

163 19 25 

1.30 
 

163 19 5 
 

175 19 29 

1.40 
 

175 19 5 
 

188 19 33 

1.50 
 

191 19 6 
 

200 19 45 

1.60 
 

210 19 8 
 

212 19 41 

1.70 
 

235 19 9 
 

225 19 46 

1.80 
 

250 19 11 
 

238 19 52 

1.90 
 

270 19 12 
 

250 19 57 

2.00 
 

290 19 14 
 

265 19 63 

2.10 
 

305 19 16 
 

280 19 71 

2.20 
 

315 19 17 
 

293 19 77 

2.30 
 

330 19 18 
 

303 19 82 

2.40 
 

352 19 21 
 

315 19 89 

2.50 
 

365 19 22 
 

325 19 94 

2.60 
 

380 19 24 
 

340 19 103 

2.70 
 

397 19 26 
 

350 19 109 

2.80 
 

410 19 28 
 

370 19 122 

2.90 
 

420 19 29 
 

375 19 125 

3.00 
 

435 19 31 
 

385 19 131 

 

2.2. Experimental Results 

As shown in Figure 5, we have captured our measured 

results for the packed conduits containing the stainless ball 

bearings using four different lengths, to which we have given 

the reference number HMQ-14, and plotted them as pressure 

gradient, ∆P/L, in units of psi/cm versus fluid flow rate, Q, in 

units of mL/min. We have shown on the plot for comparison 

purposes, the data of Farkas et al [5] and the data from our 

previous paper for empty conduits [6]. As can be seen from 

the plot, our flow rates varied between a low value of 30 

mL/min and a high value of 500 mL/min. The corresponding 

range of total pressure drops measured was from a low of 0.5 

to a high of 135psi. 
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Figure 5. Measured Results Comparison. 

We will now refer to the Quinn Fluid Flow Model (QFFM) 

[1] to establish a correlation between our measured data and 

that implicit in Quinn’s Law. 

We begin with equation (63) found in the original 

publication for Quinn’s Law [1]. This is the equation that 

relates the pressure gradient to other conduit parameters; 
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                            (1) 

Where, ∆P/L=the pressure gradient; rh=the normalization 

coefficient of fluid drag=4; � porosity coefficient; λ=the fluid 

current wall-effect normalization coefficient; nv=the viscous 

force per unit volume; nk=the kinetic force per unit volume. 

Substituting for rh in equation (1) gives; 
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Simplifying equation (2) gives; 
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                           (3) 

We can see from equation (3) that the pressure gradient 

term on the left hand side of equation (3) is the sum of a 

viscous and a kinetic term, both of which appear on the right 

hand side of equation (3). Normalizing for the viscous 

contributions, we divide across equation (3) by the term nv. 

Thus we get; 
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                           (4) 

Where Rem=nk/nv 

Rearranging equation (4) we get; 
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                             (5) 

Where QN=�Rem. 

Rearranging equation (5) we get; 

P� � 67 

 !

��
                                (6) 

Where CQ=�QN. 

Finally, equation (6) may be written as; 

P� � "# 
 "�$�                              (7) 

Where k1=64 	&  /3=67 (approx.) and k2=1/8 	& =0.04 

(approx.) 

Equation (7) is known as Quinn’s Law of fluid dynamics. 

We can see then that the term PQ in the QFFM is a viscous 

type friction factor because it represents the measured 

pressure drop, normalized for viscous contributions, and is a 

linear function of the term CQ over the entire range of the 

modified Reynolds number which is an embedded term in 

CQ. 

In Figure 6 we show a plot of our measured results as a 

function of the modified Reynolds number as well as our 

calculated values based on the QFFM. Note the excellent 

correlation between the measured and calculated values. As 

can be seen in the plot, the flow rates used in the experiments 

correspond to a range of modified Reynolds number values 

from 300 to 4,000 and includes all three regions of the flow 

regime, i.e., laminar, transition and turbulent. 

Next we present our measured results in the dimensionless 

form of Quinn’s Law, i.e., after equation (6). 

In Figure 7 we show a plot of our measured results in the 

dimensionless parameters taught in the QFFM namely, viscous 

friction factor PQ, versus wall-effect normalized fluid current 

CQ. The plot is log-log and covers a range of Reynolds number 

values from 1 × 10
-4

 to 1 × 10
7
 which represents a range of 11 

orders of magnitude. The plot describes a straight line of slope 

1/8	&=0.04 approximately, and intercept on the y-axis of 64	& 

/3=67 approximately. As a means of validating our measured 

results, we also show on the plot the third party published 

results of Farkas [5] and the line for λ=1 which represents all 

typical packed conduits [1]. 

We include the packed conduit data from the paper by 

Farkas et al because it enables us to validate the curve at 

extremely low values of the modified Reynolds number, i.e., 

creeping flow. 
 



20 Hubert Michael Quinn:  Quinn’s Law of Fluid Dynamics: Supplement #2 Reinventing the Ergun Equation  

 

 

Figure 6. Empirical Data Dimensional. 

 

Figure 7. Empirical Data Dimensionless. 

3. Modeling Our Results After Ergun 

Next we present our measured results in the format of 

Ergun’s equation. In order to accomplish this task we must 

express Quinn’s law in the format of the Ergun equation. 

We begin with Quinn’s Law from equation (7) above: 

PQ=k1 + k2CQ 

Multiplying equation (7) across by rh, we get: 

rhPQ=k1rh + rhk2CQ                             (8) 

Substituting for CQ in equation (8), we get: 

rhPQ=k1rh + rhk2δλRem                          (9) 

Reformatting equation (9), we get; 

fv=A + BRem                                (10) 

Where, fv=rhPQ, A=k1rh, B=rhk2δλ 

Substituting for rh in equation (10), we get: 

fv=4PQ                                       (11) 

A=268.19                                   (12) 

B �
��

��
                                     (13) 

Equation (10) represents Quinn’s Law expressed in the 

general format of the Ergun equation, which we will refer to 

henceforth as the Q-Modified Ergun equation. 

We can see then that the difference between Quinn’s Law and 

the Ergun equation can be distilled down to two parameters, 

1. The value of the viscous constant A=268 (approx.), in 

Quinn’s law, whereas it has the value of 150 in the 

Ergun equation. 

2. The value of the kinetic constant B=δ/2π (λ=1 for 

packed conduits) in Quinn’s Law, whereas it has the 

constant value of 1.75 in the Ergun equation. 

3. As shown in Figure 8, we have plotted the experimental 

results for 10 micron silica particles reported in the 

Farkas paper after the Q-modified Ergun equation (10). 

Note that in this straight line plot the intercept represents 

the value of A and the slope the value of B. Note that the 

value of A is validated at 268 (approx.) and the value of 

B at 2.47 (approx.). Thus we can see that this third party 

empirical data differs from the Ergun values of 150 and 

1.75 for the viscous and kinetic constants, respectively. 

4. Next we will evaluate our measured results in this same 

Ergun format. 
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Figure 8. Silica Particles. 

 

Figure 9. SS Ball Bearings. 

In our Figure 9, we have plotted the results of our stainless 

steel ball bearing packed conduits (HMQ-14). We note that all 

four packed conduits fall on the same straight line with 

intercept 290 and slope 1.67. Since we did not measure 

sufficient data points at a low enough value of the modified 

Reynolds number, the value for A is slightly elevated, i.e., 290. 

 

Figure 10. Polymeric Particles. 

In our Figure 10, we have plotted the results of our rigid 

polymeric particle packed conduit (HMQ-1) reported 

elsewhere (Quinn 2019). This data set demonstrates values 

for A of 268 (approx.) and B of 1.60, respectively. 

4. The Significance of Ergun’s Erroneous 

Values for the Constants 

We can now understand better the problem presented by 

Ergun’s erroneous values for both constants, A and B (Quinn 

2014, Giddings 1965). 

On the one hand, his equation understates the true values 

in the laminar region of the flow regime because his value of 

150 for the viscous constant is too low. On the other hand, his 

equation does not correctly represent the true pressure 

gradient in the turbulent regime for two reasons; (1) Ergun’s 

value of 1.75 for B is a constant but, (2) the true value of B is 

not constant. Rather, it is a function of the term δ in Quinn’s 

Law which, in turn, is a function of the external porosity of 

the packed conduit under study, ε0. Thus, based upon the 

teaching of Quinn’s law, we may write: 

B �
�

��
�

#

��()
	
                                (14) 

Accordingly, for measured data in the turbulent regime, 

Ergun’s equation may understate or overstate the true 

pressure gradient, depending upon the external porosity of 

the packed conduit. Additionally, and to make matters even 

more confusing, depending again upon the combination of 

the external porosity of the packed conduit under study and 

the modified Reynolds number range, it may correctly state 

the pressure gradient pursuant to a phenomenon similar to 
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that of a “stopped watch” which, as we all know, correctly 

states the time twice per day. We can illustrate this best as in 

Figure 11. 

 

Figure 11. Q-Modified Value of B. 

In our Figure 11 we show a plot of the value of B against 

the value of ε0. Accordingly, we can make the following 

conclusions concerning the characteristics of the Ergun 

equation: 

1. The Ergun equation will always understate the pressure 

gradient when measurements are made in the laminar 

flow regime. This is because Ergun’s value of 150 for A 

is less than the true value of A which is always 268 

(approx.) and the kinetic term of the equation is 

virtually neglect able. 

2. The true value of B is greater than 1.75 for all packed 

conduits having a value of ε0 less than 0.45. Thus, in 

this scenario, the Ergun equation will understate the 

true pressure gradient for all values of the Reynolds. 

3. The true value of B is equal to 1.75 for all packed 

conduits having a value of ε0 equal to 0.45. Thus, in this 

scenario, the Ergun equation will tend to correctly 

represent the pressure gradient as the values of the 

modified Reynolds number tend upwards into the fully 

turbulent regime. 

4. The true value of B is less than 1.75 for all packed 

conduits having a value of ε0 greater than 0.45. Thus, in 

this scenario, the Ergun equation will overstate the 

pressure gradient as values of the modified Reynolds 

number tend upwards into the turbulent regime. 

To highlight the above conclusions, we turn, once again, to 

our experimental evidence. 

 

Figure 12. Comparison of Ergun Equations-Silica Particles. 

As shown in Figure 12, the Ergun equation understates the 

pressure gradient for the data reported in the Farkas et al 

paper. This is due to the very low values of the modified 

Reynolds numbers for the data set, i.e. creeping flow. On the 
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other hand, the Q-modified Ergun equation correctly captures the measured values. 

 

Figure 13. Comparison of Ergun Equations –SS Ball bearings. 

As shown in Figure 13, the Ergun equation and the Q-

modified Ergun equation show an increasing discrepancy at 

higher values of the modified Reynolds number. This is 

because, (a) the value of the external porosity for the HMQ-

14 packed conduits, all have a value of 0.467, and, (b) the 

measured values are all taken at relatively high values of the 

modified Reynolds number. 

 

Figure 14. Comparison of Ergun Equations-Polymeric Particles. 

In our Figure 14, we demonstrate that the Ergun equation 

understates the pressure gradient for the measured data 

reported in the packed conduit identified as HMQ-1. This is 

because this measured data set was for a packed conduit 

having a value of ε0=0.463 and the measurements were taken 

at relatively moderate modified Reynolds number values [7]. 

As is also apparent in the plot, the Q-modified Ergun 

equation correctly captures the measured data. 

 

Figure 15. Comparison of Ergun Equations-Empty Conduit. 
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In our Figure 15, we demonstrate that the Ergun equation 

grossly overstates the pressure gradient for the measured 

empty conduit data reported in our previous paper [6]. We 

make this assertion based upon the unique feature of Quinn’s 

Law which allows a comparison between the permeability of 

an empty and packed conduit [8]. Thus, we see that the error 

created by the values of Ergun’s constants can be enormous 

when there is a large value of ε0. Again, the Q-modified 

Ergun equation correctly captures the measured data. 

5. Our Experimental Methodology 

Explained 

We have stated above that our experimental methodology 

disclosed herein is unique in the literature of packed conduit 

permeability. We now focus on the reasons underlying this 

assertion. 

Once again, we refer to the original publication of Quinn’s 

Law [1] (using the same equation numbers therein) to 

identify the critical relationships between variables pertaining 

to this aspect of our methodology. 

Firstly, we can see from equation (21) therein, that the 

conduit external porosity is a function of four independent 

variables: 

ε+ � 1 −
2�/0/

�

30�2
 

Where, ε0=the packed conduit external porosity, np is the 

number of particles of diameter dp contained in the packed 

conduit, dp is the average spherical particle diameter 

equivalent of the particles packed in the conduit, D is the 

diameter of the conduit and L is the length of the conduit. 

Moreover, it is obvious from equation (21) also that for a 

fixed value of external porosity, ε0, every discrete value of dp 

must have a matching value for np, in any given conduit 

under study. In our experimental methodology for 

establishing the value of the external porosity, ε0, we have 

measured independently all 4 independent variables in 

equation (21) and, therefore, this relationship was vigorously 

adhered to, but in virtually every other experimental 

methodology found in the literature, this is not the case. The 

principle defined by this relationship, in turn, is a dictate of 

continuity embedded in the Laws of Nature. 

Secondly, we can see from equation (38) therein, that the 

normalization coefficient of fluid drag is especially 

important: 

34 �
56�

$56�
� 4 

Where, SAp=the surface area of a spherical particle and 

CSAp=the cross sectional area of a spherical particle. 

Thus, as shown in equation (38) also, the value of rh is, not 

only, constant, but also, it is independent of particle diameter. 

This fact dictates that the value of 268 (approximately) in the 

Q-modified Ergun equation is also a constant. 

5.1. A worked Example from the Literature 

In order to underscore the importance of our experimental 

protocol disclosed herein and to distinguish it from that used 

generally in the literature, we now focus on a worked 

example from a recent publication in the literature of a well-

known author of packed conduits, J. H. Van Lopik et al [9, 

10]. In both these papers, the authors are focused on the 

nonlinear flow behavior in packed conduits. In other words, 

they are investigating the relationship between mixtures of 

blended particles in packed conduits and measured pressure 

drop versus flow rate, when that pressure drop is related to 

the fluid flow velocity in a nonlinear fashion. In the 2017 

paper, the authors studied the effect of grain (particle) size 

distribution on the nonlinear flow behavior in sandy porous 

media using well-characterized reference particles. In the 

2019 paper, on the other hand, they used samples of particles 

which were both more irregular in shape and more varied in 

diameter than the 2017 study, thus producing packed 

conduits which were more diverse in their flow 

characteristics. 

5.1.1. Foreword 

Before we get into the details of the worked example, and 

to help the reader get a grasp of where we are going in this 

exercise, we need to state upfront a dictate of nature 

concerning nonlinear flow behavior in packed conduits, 

which has only been brought to light recently by the teaching 

of Quinn’s Law. That dictate is that there exists within the 

natural world only one combination of average spherical 

particle diameter equivalent, dQ, packed conduit external 

porosity, ε0, modified Ergun coefficient values of A and B, 

that will correlate permeability flow behavior over the entire 

range of the fluid flow regime. The authors have adopted, in 

both papers of this worked example, the Forchheimer 

relationship, which identifies the characteristic relationship 

between pressure drop, ∆P, in our terminology, and fluid flow 

velocity, µs, in our terminology. They rightly point out that 

this relationship is quadratic (2
nd

 power) in the kinetic term 

and linear (1
st
 power) in the viscous term with respect to fluid 

velocity and, accordingly, defines the unique Forchheimer 

correlation coefficient values of, a, and, b. As will become 

clearer below, however, we will demonstrate that in both 

papers of this worked example, the reported values for the 

modified Ergun coefficients, A and B, do not correlate the 

measured data. 

5.1.2. Our Analysis 

In the abstract of the 2017 paper, the authors recite that 

“numerical and experimental studies show that the flow 

resistance in porous media is largely determined by geometry 

of the pore structure”. As demonstrated above, we know that, 

regarding permeability in packed conduits, continuity 

dictates that every discrete value of particle diameter, dp, 

assigned to a particular packed conduit under study, must be 

accompanied by a correspondingly matched value of external 
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porosity, ε0, in addition to the number of particles present, np, 

since it is this combination of packed conduit parameters 

that, (a) guarantees that all free space in the packed conduit is 

properly accounted for and, (b) precisely determines the 

“geometry of the pore structure”. However, in this 2017 

paper, the author’s experimental protocol does not recognize 

this dictate of the Laws of Nature, as evidenced by their 

reported results, which we include herein as our Figure 16. 

 

Figure 16. Author’s Reported Results. 

As can be seen in Figure 16 herein, for each of the 11 

samples studied, which were all reference samples, the 

authors provide 6 discrete values for particle diameter, dp, 

with just 1 corresponding value for external porosity, ε0 

designated as n (-) in the exhibit, and there is no 

“counterbalancing” value for np corresponding to either, (a) 

each value reported for dp or, (b) any average value for dp 

which would represent the entire distribution of the actual 

particles packed into any conduit under study. The authors 

determine the external porosity of the packed conduit by 

doing mass measurements of the total mass of particles in the 

packed conduit, in combination with the use of a value for 

particle density, but this experimental technique is 

independent of particle diameter assignment. In Figure 17, 

herein, we have applied Quinn’s Law to this data set 

generating, simultaneously, the values for the Q-modified 

Ergun coefficients A and B, as well as the values for the 

Forchheimer coefficients, a and b. 

 

Figure 17. Elaboration of Author’s Results Via Quinn’s Law. 
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As shown in Figure 17, because, (a) the particles were not 

spherical and (b) the authors did not report the values for 

either particle sphericity or the average spherical particle 

diameter equivalent, we were forced to employ the QFFM 

model for particle sphericity, Ωp, to adjust the reported values 

for particle diameter to values corresponding to the average 

spherical particle diameter equivalent, which we denote in 

this paper with the symbol dQ. This is a necessary 

characteristic dimension of the particles to employ the Ergun 

fluid flow model to packed conduit permeability. 

Employing the teaching of Quinn’s Law, we have deduced 

a matched set of values for average spherical particle 

diameter equivalent, dQ, external porosity, ε0, and number of 

particles present, np, as well as the corresponding Q-modified 

Ergun values for A and B, for each of the 11 packed conduits, 

all of which correlate precisely the reported permeability 

measurement results. In addition, to demonstrate to the reader 

the accuracy and precision of the fit obtained between the 

reported pressure drop values and our calculated values, we 

have included in the exhibit our back-calculated values for 

the Forchheimer coefficients, a, and, b. As can be seen from 

the exhibit, our combination of the values for the two critical 

parameters, dQ, and, εo, do not correspond to any of the 6 

values reported by the authors for particle diameter or their 

unique value for external porosity. As shown in the exhibit, 

the discrepancy between the reported values and our values 

for particle diameter varies between -4 to -26% and 4 to 12% 

for the values of ε0. Moreover, we can see that with respect to 

the Ergun fluid flow model, our calculated value of A for all 

11 samples is fixed at 268 approx., but those for the values of 

B span a range of 2.7 to 3.2 approx. Most importantly, 

however, our methodology generates the exact same value 

for dQ, εo and Q-modified values of A and B, independent of 

whatever particle fraction is chosen. In other words, our 

methodology determines a unique value for Ωp for each of 

the particle sieve fractions reported, which normalizes, in 

turn, that particle size fraction diameter, and identifies the 

unique average spherical particle diameter equivalent 

corresponding to the measured permeability results for the 

packed conduit containing the entire distribution of particles 

in that particular conduit. 

In Figure 18, we have plotted our results in Figure 17 as 

friction factor versus modified Reynolds number. 

 

Figure 18. Q-Modified FF-Reference Sands. 

As can be seen from the Q-modified Ergun viscous-type 

friction factor plot in Figure 18, to a first approximation, each 

measured data point for all 11 samples of the reference 

standards, regardless of the fluid velocity at which the data 

point was recorded, and regardless of sieve fraction assigned, 

fall on a straight line of slope B=2.72 and intercept A=268 

approximately. 

Similarly, as can be seen in Figure 19, herein, for each of 

the 9 composite samples studied in the paper, we have 

identified the average spherical particle diameter equivalent 

using just the d50 sieve fraction from the blended reference 

standards. 

 

Figure 19. Composite Samples Elaboration. 
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As can be seen from Figure 19 and the plot in Figure 18, all 9 blended samples of the reference particles produced consistent 

values for the Q- modified values of B. 

 

Figure 20. Q-Modified FF-Composite Sands. 

As demonstrated by the plot in Figure 20, it appears that 

blending of the reference particles created particle size 

distributions of varying spherical particle diameter 

equivalents and slightly elevated values for external 

porosities than the reference particles packed by themselves 

and, consequently, slightly elevated values for the Q-

modified Ergun coefficient B, whose average value was 3.26, 

i.e., slightly larger than the average for the reference samples. 

Finally, we turn our attention to the more recent study of 

2019, in which the authors present additional sample data in 

that publication. We have analyzed this data set in a similar 

manner and present our results in Figure 21 and Figure 22. 

 

Figure 21. Elaboration of 2019 Reported Results. 

 

Figure 22. Q-Modified FF -2019 Study. 

Fraction Sample Rem d Ωp dQ np ε 0 A B delta ε 0 delta a b

I.D. No. reported (dQ-d) reported ε 0 100∆Pv 10,000∆Pk

d (µsρ fgL) (µs
2ρ fgL)

cm none cm % % sm
-1

s
2
m

-2

2019 M.1 4.43 0.045 0.986 0.0444 5.55E+07 0.337 268 4.16 -1% 0.328 3% 1,597.10 16,572

M.2 4.21 0.054 0.767 0.0414 6.69E+07 0.348 268 3.79 -23% 0.330 5% 1,612.50 14,464

M.3 5.41 0.077 0.729 0.0561 2.84E+07 0.313 268 5.19 -27% 0.293 7% 1,334.90 21,103

W.1 6.54 0.148 0.482 0.0714 1.45E+07 0.277 268 7.51 -52% 0.249 11% 1,326.10 36,662

W.2 12.44 0.950 0.137 0.1298 2.31E+06 0.309 268 5.40 -86% 0.246 26% 263.37 9,958

S.1 9.48 0.105 0.847 0.0890 6.45E+06 0.378 268 2.94 -15% 0.348 9% 247.23 3,881

1.1 7.74 0.105 0.705 0.0740 1.14E+07 0.367 268 3.23 -29% 0.346 6% 406.47 5,723

1.2 7.22 0.105 0.667 0.0700 1.37E+07 0.357 268 3.49 -33% 0.337 6% 505.05 7,155

1.3 6.14 0.105 0.571 0.0600 2.19E+07 0.353 268 3.62 -43% 0.307 15% 724.65 9,071

1.4 6.62 0.105 0.644 0.0676 1.60E+07 0.323 268 4.71 -36% 0.285 13% 811.94 14,249

1.5 5.46 0.105 0.545 0.0573 2.70E+07 0.305 268 5.58 -45% 0.253 21% 1,411.80 24,222

S.2 14.49 0.150 0.905 0.1357 1.81E+06 0.379 268 2.92 -10% 0.358 6% 104.98 2,498

2.1 12.00 0.150 0.756 0.1134 3.14E+06 0.374 268 3.05 -24% 0.358 4% 159.56 3,282

2.2 9.35 0.150 0.607 0.0910 6.24E+06 0.355 268 3.55 -39% 0.334 6% 306.29 5,726

2.3 7.60 0.150 0.514 0.0770 1.07E+07 0.329 268 4.48 -49% 0.307 7% 584.96 11,219

2.4 6.82 0.150 0.470 0.0705 1.43E+07 0.315 268 5.11 -53% 0.265 19% 829.69 16,280

2.5 5.55 0.150 0.396 0.0594 2.47E+07 0.291 268 6.43 -60% 0.242 20% 1,573.50 31,612

S.3 50.56 0.634 0.735 0.4660 4.41E+04 0.389 268 2.70 -27% 0.361 8% 7.96 611

3.1 23.58 0.634 0.350 0.2216 4.18E+05 0.377 268 2.96 -65% 0.324 16% 40.16 1,577

3.2 14.57 0.634 0.234 0.1482 1.51E+06 0.326 268 4.61 -77% 0.252 29% 163.84 6,187

3.3 5.25 0.634 0.058 0.0370 6.71E+07 0.533 268 1.05 -94% 0.227 135% 287.55 894
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As can be seen from Figure 21, herein, it is obvious that 

the particle shapes of the reference materials used for the 

blending process in this study, were more irregular that in the 

2017 study. This resulted in a broader range of external 

porosity values for the packed conduits, which, in turn, 

generated a broader range of values for the Q-modified Ergun 

B values resulting in a series of lines with different slopes for 

each conduit in the friction factor plot of Figure 22 for these 

samples. 

 

5.2. Discussion 

In the 2017 paper there are two sets of modified Ergun 

coefficients, A and B, reported which are purported to 

correlate the measured data and, accordingly, predict the 

coefficients a and b accurately. One set is reported in the 

abstract, A=139.1, B=2.2 (dm), and one in the conclusion, 

A=183.8, B=2.53 (d30). Likewise, in the abstract of the 2019 

paper, there is an additional reference for that paper, A=63.1 

and B=1.72 (d10). 

We have applied these values as reported in the papers and 

captured our results in Figure 23 and Figure 24. 

 

Figure 23. Author’s Reported Values of A and B. 

 

Figure 24. Author’s Reported Correlations. 

As can be seen from Figure 23, none of the 3 sets of 

modified Ergun coefficients generate accurate values for the 

Forchheimer coefficients, a, and b. Similarly, Figure 24 

demonstrates that the correlation between measured and 

calculated results is unacceptable, for all three examples. 

For comparison purposes, we have included in Figure 25 

the correlation provided by Quinn’s Law for both samples 1 

and M. 1. 

  

Figure 25. Quinn’s Law Correlations. 

As can be observed from our exhibits herein, the accuracy 

and precision of the specified values for the Forchheimer 

coefficients a and b, in this worked example, requires an 

experimental protocol, whose degree of accuracy and 

precision regarding the measurement of particle diameter, dp, 

and external porosity, ε0, is much greater than that employed 

by the authors in this example. Of course, we must state that 

in our analysis, we have assumed that the measurements 

underlying the values of the specified Forchheimer 

coefficients, a, and b, were both accurate and precise. 

Otherwise, all bets are off regarding our analysis conclusions. 

On the other hand, the experimental protocol disclosed in 
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this paper underlying Quinn’s Law, does not suffer from the 

same lack of accuracy/precision. Accordingly, Quinn’s Law, 

having been validated by this extremely accurate and precise 

experimental protocol, can now be used to back-calculate the 

unique combination of values for dp, ε0 and np, for any data 

set, whose values for the Forchheimer coefficients a and b are 

provided as a given together with fluid properties, anywhere 

across the entire spectrum of the fluid flow regime. 

6. Conclusions 

In this paper we have demonstrated that the recent 

publication of Quinn’s Law has enabled us to clearly 

demonstrate the shortcomings of the Ergun equation in a 

manner which is both comprehensive and easy to understand. 

Moreover, it has allowed us to reinvent the Ergun equation 

after the teaching of Quinn’s Law, and produce a modified 

version which we call herein the Q-Modified Ergun equation. 

The viscous type friction factor derived from the Q-

Modified Ergun equation has the general format of fv=A + 

BRem, where the value of A=256π/3 (268 approx.), and the 

value of B=1/(2πε0
3
). Accordingly, it is now clear that the 

external porosity parameter, ε0, plays an extraordinarily 

dominant role in the permeability of packed conduits, 

particularly when the fluid flow profile is dominated by the 

kinetic term of the equation, i.e., the so-called turbulent 

regime. 

The value of A in the Q-Modified Ergun equation is 

significantly larger than the value of 150 assigned by Ergun 

in his 1952 publication. Thus, the conventional Ergun 

equation always understates the pressure gradient when the 

fluid flow profile is dominated by the viscous term in the 

equation, i.e., the so-called laminar region. 

Importantly, we have demonstrated herein an experimental 

protocol which is unique in the literature for packed conduits. 

It is an empirical technique that is self-calibrating to the 

extent that it; 

1. Defines the length of the packed conduit under study in 

terms of the average spherical particle diameter 

equivalent assigned. 

2. Establishes the experimental technique of defining the 

external porosity of the packed conduit in terms of the 

number of actual whole particles placed within the 

conduit, in combination with the conduit length 

expressed as a function of the spherical particle 

diameter equivalent. 

3. Compares the permeability measurements of an empty 

and packed conduit, demonstrating a cross calibration 

methodology, which removes any ambiguity due to the 

measurement of particle diameter or external porosity in 

a packed conduit. 

Finally, due to the specialized nature of our experimental 

methodology disclosed herein, this paper eliminates any 

issues related to the size distribution of particles. In other 

words, this paper discloses an experimental technique which 

is self-calibrating for particle size distribution and which 

renders obsolete the fundamentally erroneous practice of 

adjusting the value of A and B in the Ergun model, to 

accommodate this so-called phenomenon. Accordingly, we 

have emphatically demonstrated herein that the value of A is 

always 268 (approximately) and is independent of particle 

size, particle size distribution and fluid flow profile. 
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