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Abstract: This paper is directed at the important contribution to fluid dynamics made by Johan Nikuradze. His seminal 

paper published in 1933 represents the gold standard of empty conduit permeability, for the flow of water through roughened 

pipes, even to this very day. We revisit in some detail the “inflection profile” in Nikuradze’s plot, which appears in the curve 

for his roughened data found in Figure 9 in that publication. In so doing, we show that the data points at low Reynolds number 

values, and particularly those surrounding the value of 3.4 approximately on the x-axis of his plot, do not represent the reported 

experimental results found in his tables of data. Furthermore, we also demonstrate that this discrepancy in his original paper is 

very problematic because it forms the basis for many subsequent scholarly works. As a result, this inflection profile has 

become erroneously embedded in conventional folklore concerning fluid flow in closed conduits and has enjoyed widespread 

acceptance as being a legitimate feature of fluid dynamics dogma. With the advent recently of Quinn’s Law, a novel approach 

to the understanding of fluid flow in closed conduits, we are able to articulate in a manner not heretofore possible, the 

significance of this discrepancy which is far too important to ignore. 
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1. Introduction 

We begin by defining the problem in Nikuradze’z original 

publication [1]. 

 

Figure 1. Nikuradze’s Plot. 

As shown in Figure 1 herein, which is a replica of 

Nikuradze’s plot, there are many plotted points below a value 

of 3.6 on the x-axis. However, we cannot find anywhere in 

Nikuradze’s paper any reported measurements in the tables of 

data which correspond to the plotted points below a value of 

3.6 on the x-axis of his Figure 9. This is because in his tables 

of reported results, Nikuradze does not report any 

measurements below a Reynolds number of about 3,400. So 

the question to be asked is what does the plotted data points 

below a value of 3.6 on the x-axis represent, and what is the 

significance of the inflection point, if any, in the curve? 

Our Analysis of Nikuradze’s Figure 9. 

On pages 10 and 11 of the paper, Nikuradze describes his 

plot in figure 9. In it he states “an extensive test program 

with a range of Re = 600 to Re = 10
6
 for the Reynolds 

number was carried out, and the relationship of the resistance 

factor to the Reynolds number was studied for pipes of 

various roughness”. 

Although one would expect, then, to find experimental 

results at Reynolds number as low as 600, they are not 

reported in his tables 2 to 7. He does provide an explanation 
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for both the solid lines appearing in Figure 9 as follows; “as 

long as laminar flow exists, the resistance factor may be 

expressed as λ = 64/Re. This is represented in figure 9 by a 

straight line of slope 1:1”, and again; “Within the first portion 

of turbulent flow in smooth pipes for a Reynolds number up 

to about Re = 10
5
 the Blasius Resistance Law (reference 18) 

holds, λ = 0.316/Re 
(1/4)

. This is represented in the figure by a 

straight line of slope 1:4”. 

So we know that the straight line representing laminar 

flow is not generated as a result of his measurements, but 

rather represents theoretical dogma. In addition, the other 

straight line representing turbulent flow for smooth pipes was 

not created by his measurements either, but was taken 

directly from Blasius’ theoretical equation. [2] 

Next he describes the inflection point as follows; “The 

critical Reynolds number for all degrees of relative roughness 

occurs at about the same position as for the smooth pipe, that 

is, between 2160 and 2500”. This range of Reynolds number 

corresponds to a range of values of 3.33 to 3.39 on the x-axis 

of figure 9, which identifies precisely the inflection point in 

the curve for the plotted data points that we cannot account 

for in his tables of reported data. 

Thus, Nikuradze is, not only suggesting that there is a 

discrete value of the Reynolds number, which he terms the 

“critical Reynolds number” where laminar flow abruptly 

changes to transitional flow, but also that its value occurs 

between the Reynolds number values of 2,160 and 2,500. 

2. Methods 

Since we are challenging the inflection point in figure 9 in 

Nikuradze’s paper, we need to perform our own experiments 

which cover the critical range of Reynolds number at issue in 

the transition region between the so-called laminar and 

turbulent region of his figure 9. In addition, we want to be 

able to validate the two theoretical lines drawn by Nikuradze, 

in order to bolster our challenge to the inflection point of his 

curve. 

2.1. Experimental Setup 

Our experimental apparatus was assembled as a prototype 

instrument designed for doing continuous flow chemistry. It 

consists of a fluid flow loop with calibrated pressure 

transducers for measuring pressure drop; several rtds along 

the pipe flow loop to monitor temperature at different 

locations; a circular gear pump to provide fluid flow up to a 

maximum of 200 psi; a computerized control system running 

Labview software manufactured by National Instruments; a 

spool of Teflon tubing having an internal diameter of 0.076 

inches and three different lengths, 241 cm, 7,620 cm and 

15,240 cm, the former was not coiled but used in a fully 

extended state. Large plastic reservoirs were filled with water 

at room temperature and the water was continuously recycled 

throughout the experiments. Graduated cylinders were used 

in conjunction with the stop watch in the computer to 

accurately measure the flow rate. The voltage of the power 

supply controlling the gear pump was set in the software, and 

for each flow rate measurement, the temperature and pressure 

drop across the Teflon tubing was recorded. We show three 

photographs of the experimental set up; Figure 2 is the 

fluidics module; Figure 3 is the spool of Teflon tubing; 

Figure 4 is the electronics module and computer control unit. 

 

Figure 2. Photograph of fluidics module. 

 

Figure 3. Photograph of Teflon tubing. 

 

Figure 4. Photograph of Electronics and computer control module. 
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Table 1. Teflon tubing measured results. 

L Q 
 Temp 

L Q 
 Temp 

L Q 
 Temp 

cm mL/min psi cm mL/min psi cm mL/min psi 

15,240 5 4.50 19 7,620 73 56 19 241 200 8 19 

15,240 7 7.00 19 7,620 81 65 19 241 250 11 19 

15,240 10 9.50 19 7,620 90 74 19 241 300 14 19 

15,240 13 12.30 19 7,620 98 84 19 241 350 18 19 

15,240 15 15.30 19 7,620 110 94 19 241 400 22 19 

15,240 18 18.80 19 7,620 117 104 19 241 450 26 19 

15,240 21 23.00 19 7,620 125 115 19 241 500 30 19 

15,240 24 27.00 19 7,620 135 126 19 241 550 35 19 

15,240 26 31.00 19 7,620 140 137 19 241 600 41 19 

15,240 28 33.30 19 7,620 150 148 19 241 650 47 19 

15,240 29 34.00 19 7,620 160 159 19 241 700 53 19 

15,240 32 38.50 19 7,620 167 170 19 241 750 60 19 

15,240 34 42.70 19 7,620 173 182 19 241 800 68 19 

15,240 37 47.50 19 
    

241 850 73 19 

15,240 40 50.50 19 
        

15,240 42 54.50 19 
        

15,240 44 59.50 19 
        

15,240 47 65.20 19 
        

15,240 50 71.50 19 
        

15,240 52 74.00 19 
        

15,240 53 75.00 19 
        

15,240 58 85.00 19 
        

15,240 64 96.00 19 
        

15,240 69 108.00 19 
        

15,240 75 120.00 19 
        

15,240 80 132.00 19 
        

A total of approximately 50 separate measurements were taken and the results are tabulated in Table 1. 

2.2. Experimental Results 

 

Figure 5. Measured Permeability of Teflon tubing. 

As shown in Figure 5, we have captured our measured 

results for the Teflon tubing using three different lengths of 

that tubing, and plotted them as pressure gradient, ∆P/L, in 

units of psi/cm versus fluid flow rate, Q, in units of mL/min. 

It will be obvious from the plot that the lowest flow rates 

were achieved by the longest length of Teflon tubing. This is 

a result of the fact that we used a gear pump to generate our 

flow rate. It will be appreciated that gear pumps will deliver 

less flow rate at higher pressure drops. As can be seen from 

the plot, our flow rates varied between a low value of 5 

mL/min and a high value of 850 mL/min. The corresponding 

range of total pressure drops measured was from a low of 4 

to a high of 180 psi. This Teflon tubing is sufficiently rigid 

up to values of a total pressure drop of 200 psi to maintain 

the integrity of its diameter, i.e., below 200 psi the tubing 

diameter does not expand. In addition, the inner walls of the 

Teflon tube are extremely smooth, representing as it does 

probably the smoothest available material suitable for these 
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type of measurements. 

We will now refer to the Quinn Fluid Flow Model (QFFM) 

to establish a correlation between our measured data and that 

implicit in Quinn’s Law. [3] 

We begin with equation (63) found in the publication. 

This is the equation that relates the pressure gradient to 

other conduit parameters; 
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                             (1) 

Where, ∆P/L = the pressure gradient; rh = the 

normalization coefficient of fluid drag = 4; δ = porosity 

coefficient; λ = the fluid current wall-effect normalization 

coefficient; nv = the viscous force per unit volume; nk = the 

kinetic force per unit volume. 

We note that the λ in the QFFM and Nikuradze’s λ do not 

have the same meaning. Therefore, we will use in this paper 

the symbol with subscript λN to represent Nikuradze’s λ to 

distinguish between the two. 

Substituting for rh in equation (1) gives; 
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Simplifying equation (2) gives; 
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We can see from equation (3) that the pressure gradient 

term on the left hand side of equation (3) is the sum of a 

viscous and a kinetic term, both of which appear on the right 

hand side of equation (3). Normalizing for the viscous 

contributions, we divide across equation (3) by the term nv. 

Thus we get; 
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Where Rem = nk/nv 

Rearranging equation (4) we get; 
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Where QN = δRem. 

Rearranging equation (5) we get; 

�� � 67 

��

��
                               (6) 

Where CQ =λQN. 

Finally, equation (6) may be written as; 

�� �  ! 
  �"�                             (7) 

Where k1 = 64π/3 = 67 (approx.) and k2 = 1/8π= 0.04 

(approx.) 

Equation (7) is known as Quinn’s Law of fluid dynamics. 

We can see then that the term PQ in the QFFM is a viscous 

type friction factor because it represents the measured pressure 

drop normalized for viscous contributions, and is a linear 

function of the term CQ over the entire range of the modified 

Reynolds number which is an embedded term in CQ. 

 

Figure 6. Measured Permeability as function of Rem. 

In Figure 6 we show a plot of our measured results as a 

function of the modified Reynolds number as well as our 

calculated values based on the QFFM. Note the excellent 

correlation between the measured and calculated values. As 

can be seen in the plot, the flow rates used in the experiments 

correspond to a range of modified Reynolds number values 

from 10 to 10,000 and includes all three regions of the flow 

regime, i.e., laminar, transition and turbulent. 

Next we present our measured result in the dimensionless 

form of Quinn’s Law, i.e., after equation (6). 
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Figure 7. Comparison of empirical results. 

In Figure 7 we show a plot of our measured results in the 

dimensionless parameters taught in the QFFM namely, viscous 

friction factor PQ, versus wall-effect normalized fluid current 

CQ. The plot is log-log and covers a range of Reynolds number 

values from 1×10
-4

 to 1×10
7
 which represents a range of 11 

orders of magnitude. The plot describes a straight line of slope 

1/8π = 0.04 approximately, and intercept on the y-axis of 64π/3 

= 67 approximately. As a means of validating our measured 

results, we also show on the plot the third party published 

results of Farkas et al [4], the Princeton super-pipe study of 

McKeon et al [5, 6] and the line for smooth pipes according to 

the QFFM, i.e., Quinn’s Law. 

We emphasize that in Figure 7, we are exploiting one of 

the unique features of the QFFM which enables the 

comparison of data for packed and empty conduits on the 

same frame of reference. Thus, we include the packed 

conduit data from the paper by Farkas et al which enables us 

to validate the curve at extremely low values of the modified 

Reynolds number, i.e., creeping flow. This would not be 

possible using just an empty conduit because of measurement 

difficulties. We also point out that the modified Reynolds 

number is identical to the conventional Reynolds number in 

the case of empty conduits which is what we call a conduit 

that is not packed with particles. 

As is obvious from Figure 7, our measured results for the 

Teflon tubing does not exhibit any non-linear behavior over 

the entire range of measured values. 

2.3. Modeling our Results After Nikuradze 

Next we present a comparison of our measured results to 

those presented in Nikuradze’s figure 9 using the same frame 

of reference as Nikuradze. 

 

Figure 8. Elaboration of Nikuradze’s plot. 
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As shown in Figure 8, we have made an elaboration of 

Nikuradze’s plot in figure 9 of his original publication and 

we have included our measured data for the Teflon tubing as 

well as Nikuradze’s data for smooth pipes from his original 

publication [7]. 

Firstly, note that there are no plotted data points for 

Nikuradze’s data below a value of circa 3.5 on the x-axis and, 

accordingly, no inflection point at a value of 3.3-3.9 as stated 

in the text of his paper and shown in his figure 9. 

Secondly, note that our measured data for the Teflon 

tubing extends to much lower values of the modified 

Reynolds number than that of Nikuradze’s data, and includes 

the range of 3.3 to 3.39 on the x-axis which, according to 

Nikuradze, is where the inflection point in the curve is 

supposed to happen. 

Thirdly, note that there is no inflection point in our 

measured data for the Teflon tubing. 

It is also clear from Figure 8 that our measured data for the 

Teflon tubing makes a smooth transition between both the 

hypothetical line drawn by Nikuradze representing laminar 

flow and the Blasius dogma representing turbulent flow in 

smooth pipes, on the one hand, and Nikuradze’s own measured 

results for roughened pipes, on the other hand. However, 

Nikuradze’s plotted graph coordinates do not extend to low 

enough values of the modified Reynolds number to establish 

compatibility between our measured data for the Teflon tubing 

and his solid line for laminar flow. We therefore need to create 

an elaboration of Nikuradze’s plot with coordinates extending 

to lower values of the modified Reynolds number to evaluate 

our measured data at much lower Reynolds number values. 

 

Figure 9. Nikuradze’s Plot coordinates expanded. 

In our Figure 9, we have extended Nikuradze’s plotted 

graph coordinates down to a Reynolds number of 10. This 

corresponds to a value of 1 on the x-axis of this plot. 

Note that close to a value of 1 on the x-axis of the plot, our 

measured values for the Teflon tubing fall on a line that is 

virtually identical to the line drawn by Nikuradze as 

representing that for laminar flow, i.e. his hypothetical line 

for λN = 64/Rem. 

Finally, note that our measured data for the Teflon tubing 

demonstrates that there is a smooth transition between 

laminar and turbulent flow free of any abrupt rate of change 

and that, in particular, there is no inflection point visible in 

the vicinity of an x-axis value circa 3.3. In addition, we can 

see that our measured results for the Teflon tubing starts to 

deviate from Nikuradze’s hypothetical line of λN = 64/Rem 

representing laminar flow, at a value of the Reynolds number 

much lower than the values of 2,150 to 2,500. 

Thus, not only does our measured data not show an 

inflection in the curve where Nikuradze asserts one to be, but 

it also demonstrates that the transition region of the flow 

regime starts at much lower Reynolds number values than 

suggested by Nikuradze. 

2.4. The Significance of Nikuradze’s Hypothetical Line for 

λN = 64/Rem 

We now focus on the relevance of Nikuradze’s hypothetical 

line for his laminar flow friction factor, i.e., λN = 64/Rem and 

ask the rhetorical question, what does it represent? 

To characterize the meaning of his λN = 64/Rem, we will 

first define its meaning in the terms of our QFFM. To do this, 

we start with our equation (5) above; 
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Nikuradze’s friction factor λN is a kinetic type friction 

factor which distinguishes it from PQ in Quinn’s Law which, 

as we have shown above, is a viscous type friction factor. 

Accordingly, we must normalize equation (5) for the 

kinetic contributions by dividing across by the term QN 

which gives; 

#�
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��

  �&                             (8) 

The left hand side of equation (8) is represented by PK, the 

QFFM kinetic type friction factor. Thus we may write; 

P( �
$%

��

  �&                             (9) 

Substituting for k1 = 67 in equation (9), we get; 

P( �
�)

��

  �&                             (10) 

We can see therefore that the term PK in the QFFM is the 

equivalent of Nikuradze’s λN, since they are both kinetic type 

friction factors. 

We point out that equation (10) dictates that the kinetic 

type friction factor becomes infinite when the value of QN 

tends to zero, i.e., when the fluid is at rest. For this reason, 

the QFFM does not use this term but rather its reciprocal, 

which avoids this infinite boundary condition when the fluid 

is at rest. Thus, the term Θ is defined in the QFFM as; 

Θ �
!

�+
                                           (11) 

Where Θ = the dimensionless permeability, equivalent to 

the reciprocal of the kinetic friction factor. 

It follows that we may write: 

Θ �
!

�%
��

,$-�
                                    (12) 

It further follows that we may now state that, in the limit, 

as the value of QN tends to infinity: 

lim��→2 Θ �
!

$-�
�

��

�
. 

Similarly, we may state that, in the limit, as QN tends to 

zero: 

lim��→2 Θ � 0. 

Accordingly, a plot of Θ versus QN will pass through the 

finite value of 0, when the fluid is at rest, and will approach the 

finite value of 8π/λ when the value of QN approaches infinity. 

Nikuradze states that for laminar flow, his λN = 64/Rem and 

he draws a straight line to represent this on his plot in Figure 9. 

 

Figure 10. Dimensionless Permeability. 

In our Figure 10, we have drawn a straight line for QN/67 

which represents the reciprocal of our kinetic friction factor 

for laminar flow and corresponds to what Nikuradze did in 

his plot. We have to invert the term 67/QN to QN/67 in our 

plot to maintain parity with Nikuradze’s methodology. As is 

obvious from Figure 9 herein, the straight line represented by 

QN/67 does indeed correspond to the regime of laminar flow. 

It is clear now looking at both our figures 8 and 9 herein, 

that the QFFM and Nikuradze’s fluid flow model are 

virtually identical for laminar flow, assuming we define 

laminar flow as being represented by a Reynolds number of 

circa 10, i.e., a value of about 1 on the x-axis of the plot in 

Figure 8. 

There remains only the need to explain the difference 
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between the values of 64 in Nikuradze’s laminar flow term 

and 67 in our laminar flow term. To articulate this difference 

we refer once again to the development underlying the 

QFFM beginning with our equation (1) above. 

∆P
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We now quote verbatim from the QFFM original paper. 

Substituting for nv and nk in Equation (1), gives: 
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Therefore, empirically, Equation (13) is the most useful 

equation for any practitioner. It demonstrates that when the 

fluid velocity, µs, tends to zero, (fluid at rest), and, therefore, 

the kinetic term (2
nd

 term on right hand side of Equation 

(13)) is negligible, the control volume element coefficient is 

represented by 4πrh
3
/3 = 256π/3 = 268 approx., since this is 

the multiplier in the viscous term of Equation (13) 

corresponding to the pressure gradient ∆P/L. In other words, 

the entire control volume element is assigned to viscous 

considerations only, and is represented by the volume of a 

sphere having a radius rh, the normalization coefficient of 

fluid drag. We can show this algebraically as follows 

(neglecting the kinetic term in Equation (1)): 

∆�

�
�

����
	
�

�
� 268��                             (14) 

Equation (14) represents the empirically meaningful 

relationship between the measured pressure gradient (left 

hand side), and the fluid motion term (right hand side) when 

the fluid flow rate is very close to zero (laminar), i.e., kinetic 

contributions are negligible. Note that in this fluid flow 

regime, the fluid motion term is the product of two entities: 

nv = the viscous hydraulic force exerted per unit element of 

fluid control volume and the constant value 268, (4πrh
3
/3 = 

268), a/k/a the “viscous constant”. 

We can see then that the value of 67 is related to the so-

called viscous constant in the Kozeny/Blake [8, 9] equation 

which is an equation that represents laminar flow in conduits 

packed with spherical particles. A value of 268 for that 

constant when normalized for fluid drag, i.e., when it is 

divided by rh = 4, the normalization coefficient for fluid drag, 

gives the QFFM value of 67 [10-12]. 

Similarly, the value of 64 is related to the so-called viscous 

constant in the Poiseuille equation [13] which is an equation 

that represents laminar flow in empty conduits (no particles 

present). A value of 256 for that constant when divided by rh 

= 4, the normalization coefficient for fluid drag, gives 

Nikuradze’s value of 64. 

Thus, we can see that this discrepancy between the values 

of 67 and 64 is less than 5% and in many experiments may 

fall under the radar due to experimental error [14]. 

2.5. Evaluation of the Blasius Relationship in Nikuradze’s 

Plot 

Next we turn our attention to the straight line drawn by 

Nikuradze which represents the Blasius friction factor for 

turbulent flow of smooth pipes. 

 

Figure 11. Comparison of Dimensionless Permeability. 

In Figure 11 herein, we show where the Blasius line 

equivalent would appear in the QFFM plot. Note that it does 

indeed appear to correlate well with the results for smooth 

walled pipes in this frame of reference, i.e., a log-log plot 

over 11 orders of magnitude for the range of Reynolds 

number values. 
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2.6. Nikuradze’s Data for the Roughened Pipes 

Finally, we focus on Nikuradze’s data for the roughened pipes in the turbulent zone. 

 

Figure 12. Dimensionless Permeability of Roughened Data. 

In our Figure 12 herein, which is a plot of Quinn’s Law, 

we include all the elements shown in Nikuradze’s plot. All 

the elements show excellent correlation except that (a) there 

is no inflection point in the transition zone and, (b) the line 

representing the Blasius equation does not satisfactorily 

represent the true data for smooth pipes except at extremely 

high values of the Reynolds number and only there for a 

relatively narrow range of Reynolds number values, i.e., it 

intersects the true line rather than coinciding with it. This 

discrepancy between the Blasius equation line and the true 

line for smooth pipes is clearer in this plot because the 

coordinates of the plot are narrower and thus it provides a 

more sensitive analytical snap shot. 

Finally, we can see that the lines representing Nikuradze’s 

6 degrees of relative roughness in the turbulent zone are 

nicely resolved and present a clear image of how roughness 

affects the kinetic friction factor. This plot highlights the 

genius of Nikuradze’s roughened experiments. 

3. Fluid Dynamic Anatomy of 

Nikuradze’s Wall-Roughened 

Experiments 

We have rationalized above, all the elements contained in 

figure 9 of Nikuradze’s publication. 

 

Figure 13. Packed Conduits. 
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We now drill down into his roughened experiments to fully 

explain their impact on the ramifications of fluid dynamics in 

closed conduits. 

From a fluid dynamics perspective, Nikuradze’s roughened 

wall experiments are all about the so-called “wall effect”. 

After all, his experiments represent an ingenious 

methodology to graft roughness onto the inner wall surface 

of drawn brass pipes. This term, however, i.e., “wall effect”, 

is a familiar topic in packed conduit jargon but, in empty 

conduit jargon, it is more often described in the context of the 

“wall boundary layer”. We shall demonstrate below that both 

these concepts are one and the same in the eyes of the Laws 

of Nature and, accordingly, ought to be seamlessly absorbed 

in any unified theory of fluid dynamics. 

3.1. No Wall-effect (λ = 1) 

Before we get into what the implications of “wall effect” is 

in fluid dynamics, we need to understand what the absence of 

a wall-effect looks like, from a fluid dynamic perspective. 

In Figure 13 herein, we show the teaching of Quinn’s Law 

as it applies to packed conduits. In order to demonstrate the 

characteristics of packed conduits throughout the transitional 

and turbulent regions of the flow regime, we have included, 

in addition to the work of Farkas et al., which covers the 

creeping flow regime, the results of packed conduits from the 

published works of Giddings [15], Darcy [16] and Quinn [3]. 

As is evidenced from the plot, these results coincide perfectly 

with the line for λ = 1 in Quinn’s Law. So we might ask, 

what is the relevance of λ = 1 in Quinn’s Law? 

To answer this question, we turn once again to the original 

publication of the QFFM in which we find the definition of λ 

at equation (44). We shall repeat that definition herein; 

Λ = 1+WN                                (15) 

Where, WN = the net wall effect, and is restricted to where 

0 ≤ WN 

The entity WN is further defined as: 

WN = W1+W2R                             (16) 

Where, W1 = the primary wall effect, W2R = the residual 

secondary wall effect. 

Thus, we can see from equations (15) and (16) that a value 

of λ = 1 means that there is no wall effect of any kind. We 

shall explain below the underlying reason for this assertion. 

3.2. The Primary Wall Effect (W1)-Smooth Pipe 

Turning again to the original publication for Quinn’s Law, 

we find the definition for W1. 

D! �
EF

%
	

G
                                  (17) 

Where, β0 = the dimensionless boundary layer for a non-

tortuous fluid flow and τ= the tortuosity coefficient for a 

given flow embodiment under study. 

Thus, we can see that equation (17) establishes the 

relationship between W1 the “primary” wall effect and β0 the 

dimensionless boundary layer, in a closed conduit. We will 

not get into the mathematical definition of β0 in this paper so 

that we can maintain our focus on the concepts rather than 

the detailed mathematics. (The reader can refer to the original 

publication of Quinn’s Law to study at this level of detail). 

Looking at equation (17), we can see that the primary wall 

effect W1 is the dimensionless boundary layer for non-

tortuous flow normalized for the tortuosity of the fluid flow 

embodiment under study, τ. But the value of τ for an empty 

conduit has the constant value of 0.188 (approx.) which is 

less than unity. (The reader can refer to the original 

publication of Quinn’s Law to evaluate the definition of τ). In 

addition, for the special case of an empty conduit with 

smooth walls, wherein the residual secondary wall effect is 

equal to zero, we can see that the net wall effect WN = W1 

[Equation (16)] and consequently the value of λ = (1+ W1) 

and since W1 is not equal to zero, the value of λ will be 

greater than 1. 

 

Figure 14. Comparison of Empty and Packed Conduits. 
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In Figure 14 herein, we show a comparison of the line for 

λ = 1 (packed conduit) and that for a smooth walled empty 

conduit. Note that at low values of the QN number there is no 

difference between the two. This is because in this laminar 

region of the flow regime, the kinetic term in the 

permeability equation is negligible and because λ manifests 

only in the kinetic term, it does not play a role in laminar 

flow. The difference is most pronounced in the transition 

region of the flow regime and diminishes as the flow 

becomes more turbulent. To evaluate this region of the flow 

regime, we will need to change the coordinates of our plot. 

 

Figure 15. Comparison of Dimensionless Permeability. 

In order to concentrate on the primary wall effect, which 

manifests only outside of laminar flow, we have narrowed the 

coordinates of our plot in Figure 15 to focus on Reynolds 

number values between 10 and 1×10
7
 which includes both 

the transitional and fully turbulent regions of the flow 

regime. Note that the line for the smooth walled pipe has a 

maximum value for λ = 6 (approx.) at relatively low values 

of the Reynolds number but its value continuously decreases 

as a function of the Reynolds number approaching the λ 

value of 1 at extremely high values of the Reynolds number. 

This decreasing value of λ is due to the boundary layer being 

disrupted as the primary wall effect decreases at higher 

Reynolds number values due to increased turbulence. 

Accordingly, the primary wall effect is most pronounced at 

the onset of the transitional region of the fluid flow regime. 

Now that we understand how the concept of the primary 

wall effect and the boundary layer are linked together in the 

case of a smooth walled pipe, it is an easy leap of faith to 

understand the underlying reason why the value of λ=1 for a 

packed conduit. The tortuosity coefficient of a packed 

conduit, τ, is typically enormous, i.e., many, many, many 

orders of magnitude greater than that in an empty conduit. 

Accordingly, the boundary layer is stretched over a much 

greater surface area which, in turn, reduces the thickness of 

the boundary layer, so that it is, in reality, infinitesimally 

thin, resulting in, no primary wall effect, no measurable 

boundary layer, and a value of λ = 1 which remains constant 

over the entire range of Reynolds number values. Thus, the 

distinguishing feature between a packed and an empty 

conduit with smooth walls is the tortuosity normalization 

coefficient, which is routed in the architectural make up of 

either flow embodiment. (Again we refer the reader to the 

original publication of Quinn’s Law to study the definition 

underlying the tortuosity coefficient τ). 

3.3. The Residual Secondary Wall effect (W2R)-Roughened 

Wall Conduit 

Next we focus on the secondary wall effect which is due 

entirely to the roughness of the inner wall of an empty 

conduit. The roughness of the inner wall, characterized as 

“bumps” on the underlying smooth wall, will cause the fluid 

to change its trajectory, assuming that the bumps extend into 

the flowing fluid stream [17]. However, if the bumps are not 

large enough to “punch through” the boundary layer caused 

by the primary wall effect, they will have no net effect on the 

fluid trajectory. Thus, even though the bumps are present in 

all regions of the fluid flow regime, they will only manifest 

when they extend through the boundary layer. Accordingly, 

we call this extension beyond the boundary layer the 

“residual” secondary wall effect which means that the overall 

net wall effect, WN, will be the sum of the primary wall effect 

and the residual secondary wall effect, which is evident from 

equation (16) herein. 

 



12 Hubert Michael Quinn:  Quinn’s Law of Fluid Dynamics: Supplement #1 Nikuradze’s Inflection Profile Revisited  

 

 

Figure 16. Roughened Walls in context. 

As shown in Figure 16, the values for Θ corresponding to 

the values of λ reach a constant value at higher Reynolds 

number values. 

Thus, Nikuradze’s data show changing Θ values until the 

Reynolds number values become large enough, at which 

point they becomes constant. Thus, the “shoulder” that is 

evident in Nikuradze’s data coming off the line representing 

smooth walls, is due to the ever decreasing primary wall 

effect as the Reynolds number values increase and it 

eventually disappears into a straight line when the primary 

wall effect is negligible and only the secondary wall effect 

remains, i.e. the residual secondary wall effect is equivalent 

to the total wall effect. 

Accordingly, the only non-linear behavior exhibited in the 

kinetic friction factor of fluid flow in closed conduits, resides 

at Reynolds number values in the transition and near 

turbulent regions of the fluid flow regime and represents a 

gradual evolving profile rather than an abrupt profile change, 

and is due to the disappearance of the primary wall effect 

giving way to the secondary wall effect, as the Reynolds 

number values reach farther and farther into the turbulent 

region, i.e., the fluid flow profile becomes more and more 

turbulent. 

4. Inflection Profile Based Scholarly 

Works 

It is now almost 100 years since the inflection profile of 

Figure 9 of Nikuradze’s publication became known to the 

scientific community and in that time period there are many 

scholarly attempts to validate Nikuradze’s apparent inflection 

profile. We will now briefly review one of the most recent 

examples of this phenomenon to underscore the importance 

of this issue. 

4.1. Worked Example (2018) 

This is a very recent example of the proliferation of the 

Nikuradze inflection profile dogma, some 85 years after 

Nikuradze’s original publication. 

Unified Friction Formulation from Laminar to Fully 

Rough Turbulent Flow [19]. 

By Dejan Brkić and Pavel Praks. 

Appl. Sci. 2018, 8 (11), 2036; 

https://doi.org/10.3390/app8112036. 

Received: 14 September 2018 / Revised: 2 October 2018 / 

Accepted: 20 October 2018. 

4.2. Author Abstract 

“This paper gives a new unified formula for the Newtonian 

fluids valid for all pipe flow regimes from laminar to the 

fully rough turbulent. It includes laminar, unstable sharp 

jump from laminar to turbulent, and all types of the turbulent 

regimes: smooth turbulent regime, partial non-fully 

developed turbulent and fully developed rough turbulent 

regime. The formula follows the inflectional form of curves 

as suggested in Nikuradse's experiment rather than 

monotonic shape proposed by Colebrook and White. The 

composition of the proposed unified formula consists of 

switching functions and of the interchangeable formulas for 

laminar, smooth turbulent and fully rough turbulent flow. The 

proposed switching functions provide a smooth and a 

computationally cheap transition among hydraulic regimes. 

Thus, the here presented formulation represents a coherent 

hydraulic model suitable for engineering use. The model is 

compared to existing literature models, and shows smooth 

and computationally cheap transitions among hydraulic 

regimes. 
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Figure 17. The unified hydraulic model II; Equation (15). 

4.3. Author Conclusions 

A sudden failure of valves or other components related to 

hydraulic systems in civil and mechanical engineering [35-37] 

can also cause a change of flow regime. Because of this, it is 

crucial to take such cases into consideration. The unified flow 

friction approach presented here is flexible, as proposed 

equations for a certain hydraulic flow regime can be easily 

altered using interchangeable formulas for laminar, smooth 

turbulent, and rough turbulent flow. Although our previous 

experiences with artificial intelligence [38-40] have shown that 

an encapsulation of all flow friction regimes into one coherent 

model is not a straightforward task, the form proposed here is 

simple. Thus, the unified approach presented here can be easily 

implemented with software codes. Moreover, as the proposed 

switching functions are carefully chosen so that they follow 

Nikuradse’s inflectional law of roughness, our unified 

approach seems to be more realistic than the classic implicitly-

given 80-year-old Colebrook–White monotonic curves model 

[41-46]. The switching functions presented here are expressed 

by simple rational functions and thus do not contain 

computationally expensive transcendental functions. 

Consequently, our unified flow friction formulation possesses 

a reasonable computational complexity.” 

We will not go into a lengthy analysis of this paper herein 

but we have included above, (a) the abstract, (b) the graph in 

Figure 15 containing the inflection profile and, (c) the 

conclusions, as direct quotes from the paper. These three 

extracts from the paper say all that needs to be said. 

We make one final comment on this paper, however, which 

lies at the heart of this issue. We note that these authors did not 

put a scintilla of effort into designing and executing their own 

measurements of permeability in an empty closed conduit, to 

bolster their entirely mathematically driven development. 

Moreover, it is equally surprising that these authors did not put 

a scintilla of effort into mentioning their reasons for ignoring 

the fact that there exist no reported results in Nikuradze’s 

tables of data that correspond to the so-called inflection profile. 

5. Conclusions 

In this paper we have raised serious questions concerning 

the inflection profile in Nikuradze’s kinetic friction factor 

analysis surrounding his measurements of the permeability of 

water flows in the turbulent region, for his sand roughened 

pipes. Specifically, we have demonstrated that the plotted 

data points which define the inflection profile are not 

reported in his tables of data and, in addition, our 

measurements confirm that there is no inflection in the curve. 

We have also provided our own measurements to bolster 

our challenge to the Nikuradze plot and by incorporating 

those measurements into the QFFM, we have established a 

unified frame of reference within which we compared 

Nikuradze’s measurements to those of third party published 

results, such as those of the Princeton study in the super-pipe 

which covers a range of Reynolds number values within the 

fully developed turbulent regime, on the one hand, and the 

study by Farkas et al for packed conduits, which covers a 

range of Reynolds number values within the creeping flow 

and laminar region of the flow regime, on the other hand. 

In addition, we have also demonstrated that the Blasius 

equation which is purported to provide an accurate projection 

of the friction factor for smooth pipes in the turbulent regime, 

is less than adequate, and can only be relied upon over a very 

narrow range of very high Reynolds number values within 

the fully developed turbulent flow regime. 
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Most importantly, regarding the region of laminar flow, we 

have shown that both our measurements and Nikuradze’s 

measurements are virtually identical when viewed in the friction 

factor dimensionless analysis of either the QFFM or 

Nikuradze’s own fluid model. This is an important result 

because it provides validation for the true value of the viscous 

constant which manifests in the Kozeny/Blake, Ergun and 

Poiseuille equations, a subject of much controversy for a very 

long time regarding the permeability of packed conduits. 

In our evaluation of the experimental results of Nikuradze for 

roughened walls in the so-called turbulent regime, we have gone 

to great effort to explain how rough walls make a difference in 

the fluid dynamics of closed conduits. In so doing, we have used 

the underlying theory of Quinn’s Law to demonstrate that the 

impact of wall roughness is all about the management of both 

the primary and the secondary wall effect. This explanation 

takes all the mystery out of some of the more bizarre accounts of 

boundary layer theory found in conventional dogma. 

Finally, we have raised the issue of published scholarly 

works which do more damage than good because they derive 

theoretical relationships which are based solely on 

mathematically driven correlations without any grounding 

whatsoever in the Laws of Nature. 
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