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Abstract: The dynamics of wind velocity data modeling plays a crucial role for the estimation of wind load and wind energy. 
Apart from these, the same modeling must also be used in the load cycle analysis of fatigue failure in slender structures to 
address periodic vortex shedding. Most authors fitted wind velocities of various locations using Weibull model. However, 
they did not check the validity of the model in describing the range of extreme wind velocity, which is not clear from 
the usual graphical representation. In this work, the validity of Weibull model for describing parent as well as extreme 
hourly mean wind velocity data for four places on the east coast of India has been checked; Weibull model has been found 
to become inappropriate for describing wind velocity in the range of extremes. 

Keywords: Weibull Distribution, Wind Velocities, Non-Exceedance Probability, Gumbel Distribution,  
Chauvenet’s Criterion, Probability Factor 

 

1. Introduction 

In recent years, modeling wind velocities by appropriate 
probability distributions has found great importance in many 
practical applications which include air pollution modeling, 
the analysis of wind loading to structures and determination 
of wind power potential (Zaharim et al., 2009) [1]. Therefore, 
an appropriate probability distribution is required for wind 
velocity data analysis. The vortex induced vibration on 
slender structures is another important phenomenon of 
concern. Due to the formation of Von Karman’s vortex street, 

slender structures are subjected to fatigue failure owing to 
cross wind vibrations. This vibration would be severe if there 
is resonance when the natural frequency of the slender 
structure is the same as that of this vortex shedding. Wind 
velocities, for which these frequencies are same, are called 
critical wind velocities. The fatigue failure would be caused 
due to this vortex shedding which is periodic in nature. The 
number of stress cycles which are expected in the service 
life of the structure can be determined from the probable 
annual number of hours in the critical wind velocity range. 
The annual number of hours which can be expected in the 
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critical wind velocity range can be determined by the 
integration of probability density distribution of hourly wind 
velocity data over the range of critical wind velocities. It is 
worthy to mention that wind power density varies as the cube 
of the wind velocity. Hence, probability density distribution 
of wind velocity data is required for the estimation of wind 
power density. Apart from these two important purposes, 
wind velocity data modelling is also necessary for the 
specification of probability factor or risk coefficient which is 
further required for the specification of the design wind 
velocity leading to the codification of design wind load. 

Many authors, namely Sarkar et al. (2017) [2], Gupta 
(1986) [3], Rehman et al. (1994) [4], Deaves and Lines 
(1997) [5], Garcia et al. (1998) [6], Lun and Lam (2000) 
[7], Sulaiman et al. (2002) [8], Bivona et al. (2003) [9], 
Celik (2004) [10], Zaharim et al. (2009) [11], Chang 
(2011) [12], Costa Rocha et al. (2012) [13] and Harris and 
Cook (2014) [14] have fit the lower wind velocity range for 
different locations using Weibull models. The common 
methods for determining parameters of Weibull distribution, 
as employed by the above cited articles, are the frequently 
used graphical or least-square method, method of moments 
and maximum likelihood method. Other authors like 
Seguro and Lambert (2000) [15], Chang (2011) [16], Costa 
Rocha et al [17]. (2012) have compared various methods to 
determine the best method using different statistical 
techniques (K-S test, R. S. M. E. test, Chi Square test, etc.). 
However, the conclusions of such studies have not been 
unique. Notably, all such studies found that the least -
square method performed poorly. For example, Seguro and 
Lambert (2000) [18] compared methods such as the 
maximum likelihood method, the modified maximum 
likelihood method and the frequently used least-square 
method for the determination of Weibull parameters of 
wind velocity data modeling by employing two tests. The 
first test used simulated wind velocity data set from which 
Weibull parameters were determined and compared with the 
known values whereas in the latter, performances of different 
methods were assessed based on the wind energy output 
which can be determined from Weibull parameters. The least-
square method was found to be less accurate and less robust. 
However, Cook (2001) [19] stated that the conclusion that the 
traditional least-square method is less accurate than the 
maximum likelihood method and modified maximum 
likelihood method is incorrect. The reason for incorrect 
conclusion is the authors’ use of an incorrect interpretation of 
cumulative probability distribution. Cook showed that the 
result obtained by the corrected least-square method is very 
close to the two modern methods mentioned above. In line 
with this work, Chang (2011) [20] and Costa Rocha et al. 
(2012) [21] compared six methods (the method of 
moment, empirical method, least-square method, maximum 
likelihood method, modified maximum likelihood method 
and energy pattern factor method) for determining Weibull 
parameters. However, unfortunately, both studies used the 
same incorrect definition regarding the cumulative 
distribution function, as mentioned by Cook (2001) [22]. That 

is why, the above authors have again found the least-square 
method to be less appropriate. From these discussions it is 
clear that no single method is superior to any other 
method, as far as the determination of Weibull parameters 
is concerned. Hence, in this article, Weibull parameters for a 
chosen station have been estimated by all six methods; the 
best method is subsequently determined by the K-S test and 
tabulated. The details of the various methods and the 
underlying calculations involving determination of the best 
method are not a subject of this work. 

Though appropriateness of Weibull model for fitting wind 
velocity distribution has been well-established, some other 
models have also been used to fit the same. Akdag et al. 
(2010) [23] proposed the use of a two-component mixture 
Weibull distribution involving five parameters. Similarly, 
Celik et al. (2013) [24], Thiaw et al. (2010), Fadare (2010) 
[24] and Jung et al. (2013) [25] suggested the use of an 
artificial neural network (ANN) for wind velocity data 
modeling. Chang (2011) [26] proposed two new mixture 
probability functions, i.e., the mixture Gamma-Weibull 
function (GW) and the mixture truncated normal function 
(NN) to estimate wind power density. Zhang et al. (2014) [27] 
proposed the use of the maximum entropy distribution for 
estimating wind power density. Usta et al. (2012) [28] used 
a skewed generalized error distribution (SGED) and a 
skewed t-distribution (STD) for this purpose. Za’rate-
Minano et al. (2013) [29] and Zhou et al. (2013) [30] used 
stochastic models, whereas Carvalho et al. (2013) [31] used 
meso-scale and micro- scale modeling. Soukissian (2013) [32] 
used the Johnson SB distribution in addition to the classical 
Weibull distribution to model wind velocity data. Lujano-
Rojas et al. (2012) [33] proposed a mathematical model for 
stochastic simulations of small wind energy systems. Beccali 
et al. (2010) [34] developed a methodology for estimating 
spatial wind velocities over complex terrain and, 
subsequently, wind energy. Carapellucci et al. (2013) [35] 
proposed a new methodology for synthetically generating 
hourly wind velocity data for any location by incorporating a 
physical-statistical approach based on readily available 
statistical input parameters, such as the mean, average and 
maximum wind velocities, on a monthly or yearly basis. 
Similarly, Morales et al. (2010) [36] presented a 
methodology for characterizing the stochastic process 
associated with wind velocity by specifying a set of 
plausible scenarios that can describe the uncertainties in the 
wind velocities at different geographical locations. Douak et 

al. (2013) [37] introduced an approach to active learning in the 
field of wind energy forecasting. [38] Calif (2012) considered 
the use of parametric probability density functions (PDFs) to 
fit empirical wind velocity fluctuation distributions. Chen et 

al. (2014) [39] proposed a new hybrid model for predicting 
wind velocity and wind energy that is useful only for short-
term forecasting. However, Harris and Cook (2014) [40] 
established that simple Weibull distribution is the best for 
wind velocity data modeling. 

In spite of the suitability of Weibull model for fitting wind 
velocity data, it has been derived from the weakest link theory 
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which indicates that it is used to fit minimum data though 
sometimes it is used to fit maximum data as well (Castillo et 

al., 2005) [41]. Hence, there may be a threshold wind 
velocity below which Weibull distribution can be considered 
suitable. However, for the analysis of the wind power 
density it is worthy to mention that the cut-in and cut-out 
wind velocities for most of the wind turbines are 5 and 25 
m/s respectively (EI-Wakil, 2002) [42]. Hence, for the 
correct prediction of wind power density, wind velocity 
probability distribution should be able to model wind 
velocities till 25 m/s whereas Weibull distribution has been 
found to be suitable to model velocities till the maximum 
range of 14 m/s [43](Sarkar et al., 2017). Apart from this, 
fatigue failure due to cross wind vibration is important to 
consider for the wind velocity with an annual exceedance 
probability of 1/50. Hence, the modelling of upper tail is 
also important for this case. In addition, the probability 
factor was specified in IS: 875 Part III(2015) by modelling 
maximum daily gust wind velocities. It would obviously 
be better if this factor can be specified by the modelling of 
the same hourly mean wind velocity data. However, based 
on existing plotting techniques for wind velocity 
distributions, it cannot be predicted if the extreme of wind 
velocity data follows a Weibull model. Therefore, in this 
work, the authors are interested in verifying the suitability of 
Weibull model for modeling extreme wind velocities using 
suitable plotting techniques. If Weibull model is inappropriate 
to describe the extremes, then the limiting velocity up to 
which it can be considered appropriate must be determined. 
In this case, it is also necessary to determine the best 
theoretical estimator to fit wind data beyond this threshold 
value. In the present work, the details of wind velocity data 
are given in section 2; various probability distributions are 
described in section 3; determination of parameters and 
wind climate modeling using Weibull distribution are 
performed in section 4; the threshold value of the wind 

velocity up to which Weibull model is valid is analytically 
and graphically determined, the results of which are 
compared in section 5; the extreme value limit distributions 
for modeling are obtained in section 6; the determination of 
the probability factor is discussed in section 7. Section 8 
presents the chief conclusions. 

2. Wind Velocity Data 

Wind velocity data have been obtained from the Indian 
Meteorological Department, Pune, measured at an altitude of 
10 m. The instrument used to measure the data is Dyne 
Pressure Tube Anemograph (DPTA). The data were 
supplied in a time series format which contains hourly mean 
wind velocities measured every hour of a day. Though the 
available wind velocity data are in a class width of 1 km/h, the 
most appropriate class width that must be chosen for this 
purpose will be discussed later in this section. The frequency 
of each class of wind velocity is given in this format. The 
scope of this study includes four stations: Gopalpur, Kolkata, 
Madras Harbour and Meenambakkam. The latitude, 
longitude and observation period for these stations have been 
mentioned in Table 1. 

Table 1. Meteorological Station in India. 

Station Name 
Latitude 

(°N) 

Longitude 

(°E) 
Observation Period 

Gopalpur 19.27 84.92 Jauary 1969- December 1980 
Kolkata 22.57 88.37 January 1969- December 2000 
Madras Harbour 13.08 80.29 January 1969- June 1987 
Meenambakkam 12.98 80.18 January 1969- December 2005 

The probability vs. hourly mean wind velocity histograms 
with a 1 km/h class width show that many flaws are 
subtlyintroduced with this class width and that the histograms 
arenot stable. Theunstable histogram with sampling error has 
been simulated in Figure 1. 

 

Figure 1. Simulated histogram with sampling error. 

The flaws in wind velocities are noticeable in the graph 
of the relative frequency versus wind velocity in the 

example of data from Gopalpur which is depicted in Figure. 
2(a). However, this problem appears when the wind velocity 
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is initially measured in one unit and then converted into 
another unit via multiplication by a factor and subsequently 
rounding to an integer. Initially, the wind velocities are 
generated in knots and then converted to km/h via 
multiplication by a factor of 1.852 and subsequent rounding 
to integer values. Because km/h and knots have no common 
integer multiple, the error due to sampling would vanish 

when the bin size is increased (Kasperski, 2010). 
However, increasing the class width results in a loss of 
accuracy. In this article, an optimum class width of 2 km/h, 
which is neither too low to introduce bias nor too high to 
sacrifice accuracy, is chosen for all calculations (Sarkar et 

al., 2017). The corresponding histogram is plotted in Figure. 
2(b), which is essentially free of distortions 

 

Figure 2. Probability density distribution of hourly mean wind velocity data. 

 

Figure 3. Traces of the extreme value limit distributions on a Gumbel probability paper. 

3. Weibull and Generalized Extreme 

Value Distribution 

Weibull function, a continuous probability density 
function with three parameters, may be mathematically 
expressed as: 

���� � 	 �� 	

��
� 
	��� 	exp �� 	


��
� 


��                 (1) 

Where v represents wind velocity, k is the dimensionless 
shape parameter, s is the scale parameter and ε is the 
location parameter which represents the minimum value of 
v. The cumulative distribution function of Weibull model 

can be determined by integrating Eq. (1) which is as follows: 

���� � 1 � exp �� 	
�Ɛ� 

��                      (2) 

The location parameter ε can be equated to 0 as it is the 
minimum wind velocity. Therefore, 3-parameter Weibull 
distribution would become a 2-parameter distribution as 
given by Eq. (3). 

���� � 1 � exp �� 	
�

��                           (3) 

Extreme wind velocities can be modelled by using extreme 
value limit distributions. Gumbel (1958) was the first person 
who discussed extreme value theory in his comprehensive 
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textbook. He basically discussed three different extreme value 
limit distributions namely Gumbel (type I), Fréchet (type II) and 
reverse Weibull (type III). Type I distribution appears to be a 
straight line when it is plotted in Gumbel probability paper. A 
probability paper is a graph paper where the axes are ruled in 
such a way that the transformed distribution with respect to the 
reduced variate appears to be a straight line in the graph 
(Kasperski, 2009). II and III appear as curves when plotted on a 
Gumbel probability paper. The curves for type II distributions 
are concave, whereas a clear convex characteristic has been 
observed for the curves corresponding to to type III 
distributions, as shown in Figure 3. 

4. Wind Speed Data Modeling Using 

Weibull Distribution 

At the outset of wind data modeling, it should be noted that 
Weibull distributions cannot predict actual probability for 
calm hours, which is clear from Eq. (3). Hence, calm hours 
are eliminated from the wind velocity data. Then, Weibull 
parameters are estimated by the six methods, mentioned 
earlier in the introduction. The K-S test is then performed to 
ascertain the best method for the chosen station. From Weibull 
parameters, the theoretical probability density distributions 
(PDFs) of the wind velocity data for three of the above-
mentioned locations in India are plotted along with the 
observed histograms. For all these stations, the wind velocity 
density distribution can be approximated by a Weibull model 
for lower wind velocity ranges (0-12 m/s). However, based 
on these graphical representations, it is not clear if the 
extreme wind velocities follow a Weibull distribution.  

Another representation of wind velocity data modeling is 
to plot observed and theoretical probability distributions on a 
Weibull probability paper wherein ln(−ln(1 − f( v))) is plotted 
with respect to ln(v )so that Weibull distribution would 
appear as a straight line in that paper. It is to be noted that the 
suitable simplification of Eq. (3) leads to the slope-intercept 
form of the straight-line equation, On this paper, the lowest 
probability has been taken as 0.00001 whereas the highest 
probability has been taken as 0.99999. The fit of the data to a 
Weibull distribution can be seen using a Weibull probability 
paper. Therefore, if a dataset follows a Weibull distribution, 
then a straight line is expected to be formed on a Weibull 
paper. Plots on Weibull probability paper for Gopalpur and 
Kolkata are shown in Figures. 5(a)-(b). However, Figure 5 
does not conclusively show if the extreme wind velocity data 
follows a Weibull distribution. This is because the lower tail 
is heavily weighted in Weibull probability paper compared to 
the extreme because the distance between 0.00001 and 0.5 is 
substantially larger than the distance between 0.5 and 
0.99999. To check the suitability of Weibull distribution for 
modelling extreme wind velocity data, non-exceedance 
probabilities should be plotted on a new probability paper in 
which the lower half (0.000001-0.5) is the same as Weibull 
probability paper and the upper half (0.5-0.999999) is a 
mirror image of the lower half. In this probability paper, the 

extreme and the lower tail of the wind velocity data are 
equally weighted, and the probability paper becomes 
symmetric at approximately 0.5. Therefore, this new paper 
can better facilitate a comparison between observed and 
theoretical distributions, which in turn may be used to 
ascertain the appropriateness of the theoretical Weibull model 
in the range of extreme wind velocity data. The theoretical 
and observed cumulative probabilities of the wind velocity 
against ln are plotted on this new probability paper for the 
four stations 

5. Conclusions 

Wind climate modeling has been conducted for both the 
lower and extreme wind velocity data. Following are the 
conclusions: Weibull distribution can properly model the 
lower tail; however, after a particular threshold value, 
Weibull distribution fails to model the wind climate for the 
upper tail. This threshold value can be determined 
analytically. Beyond this threshold value, the wind velocity 
distribution can be fitted by extreme value limit distributions. 
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