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Abstract: The extension of the previous paper [Can. J. Phys. Vol. 88, (2010), 501–511] has been made. Therefore, the effect 

of the neutral atoms collisions with electrons and with positive ions is taken into consideration, which was ignored, for the sake 

of simplicity, in the earlier work. Thus, we will have multi-collision terms (electron–electron, electron–ion, electron– neutral) 

instead of one term, as was studied before for the sake of facilitation. These collision terms are needed to obtain the real 

physical situation. The new procedures will increase the ability of the research applications. This study is based on the solution 

of the BGK (Bhatnager–Gross–Krook) model of the nonlinear partial differential Boltzmann equations coupled with 

Maxwell’s partial differential equations. The initial-boundary value problem of the Rayleigh flow problem applied to the 

system of the plasma (positive ions + electrons+ neutral atoms), bounded by a moving plate, is solved. For this purpose, the 

traveling wave solution method is used to get the exact solution of the nonlinear partial differential equations system. The 

ratios between the different contributions of the internal energy changes are predicted via the extended Gibbs equation for both 

dia-magnetic and para-magnetic plasma. The results are applied to a typical model of laboratory argon plasma. 3D-Graphics 

illustrating the calculated variables are drawn to predict their behavior and the results are discussed. 

Keywords: Rayleigh Flow Problem, Charged Gas, Boltzmann Equation, Maxwell Equations, Exact Solution,  

Boltzmann H-Theorem, Internal Energy, Extended Gibbs Formula 

 

1. Introduction 

Partially ionized plasmas at low gas pressure have found a 

wide range of applications in many branches of 

contemporary technology. Gas discharge lighting, 

manufacturing of semiconductor chips, plasma treatment of 

materials [1, 2], Astrophysics [3], nanotechnology, plasma 

chemistry, and bio-medical treatments are the most known 

applications of low temperature plasma [4]. Plasma (charged 

gases) based technology underpins some of the world’s 

largest industries producing a significant proportion of the 

world’s global commercial products including; computers, 

cell phones, automobiles, aero planes, paper and textiles [5]. 

Foremost among these is the electronics industry, in which 

plasma-based processes are indispensable for the 

manufacture of ultra-large-scale integrated microelectronic 

circuits. The Boltzmann equation represents a well-defined 

model to describe the motion of plasma, when microscopic 

effects must be considered. This is the case of an electron 

flow in MEMS (Micro-Electro-Mechanical Systems). 

Abourabiia and Abdel Wahid [6], in the framework of 

irreversible thermodynamics, examined the characteristics of 

the Rayleigh flow problem of a rarified electron gas extracted 

from neutral atoms and proved that, it obeys the entropic 

behavior for gas system but with an approximate solution and 

inaccurate formula of the collision frequency. In the present 

paper, the enhancement and improvement of this study is 

done. The present study has obvious peculiarities in 

comparison with the previous one [6]. In principle, the 

complete and accurate formulas of collision frequencies are 

used, avoid the discontinuity in the solution using Laplace 

transformation, used in [6], and introduce the complete value 
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of variables without any cutoff caused from the small 

parameters method as in [6] and in this study we have no 

restriction on the non-dimensional parameter like [6]. 

The kinetic theory has contributed not only to the 

understanding of nonequilibrium transport phenomena in gases, 

but also to the development of general nonequilibrium 

statistical physics. It is well accepted that the Boltzmann 

equation [7-20] is one of the most reliable kinetic models for 

describing nonequilibrium phenomena in gas phase. Following 

its success and usefulness, The Boltzmann equation is widely 

used in order to describe various gas-phase transport 

phenomena such as plasma gases, granular gases, polyatomic 

gases, relativistic gases and chemically reacting gases [11-20]. 

The kinetic equation of gas flow based on the Boltzmann 

equation, has obvious peculiarities in comparison with the 

macroscopic description found by using the Navier–Stokes 

equations, see [15]. Since it is very difficult to solve the full 

Maxwell-Boltzmann equations, various approximations have 

been suggested, such as the Chapman-Enskog procedure, 

Krook’s model, and Lee’s moment method [13-20] for the 

solution of the Boltzmann’s equation. 
 The objective of this paper is to solve the initial-boundary 

value problem of the Rayleigh flow problem applied to the 

system of the plasma to determine the macroscopic 

parameters such as the mean velocity, shear stress, viscosity 

coefficient together with the induced electric and magnetic 

fields. Using the estimated distribution functions, it is of 

fundamental physical importance to study the irreversible 

thermodynamic behavior of the diamagnetic and 

paramagnetic plasma, so that the predictions of the entropic 

behavior and related thermodynamic functions are 

investigated. The results are applied to a typical model of 

laboratory Argon plasma. The results agree with proceeding 

theoretical studies are illustrated. 

2. The Physical Problem and 

Mathematical Formulation 

Let us assume that the upper half of the space ( y  0≥ ), 

which is bounded by an infinite flat plate (y = 0), is filled 

with a multi-component plasma. The plasma is initially in 

absolute equilibrium and the wall is at rest. Then the plate 

starts to move suddenly in its own plane with a velocity 

( -
0

tU e α ) along the x-axis ( 0  and U α  are constants). Moreover, 

the plate is considered impermeable, uncharged, and an 

insulator. The whole system (electrons + ions + neutrals 

+plate) is kept at a constant temperature. All physical 

quantities are defined in the nomenclature. 

Let the forces ef
�

 acting on each electron; be given by [22-

24]: 

( )e e e
o

e
f eE c B

c
= − − ∧
� � �

�                         (1) 

By taking 

( ,0,0), ( ,0,0), ( ,0,0) and (0,0, )x x x zV V J qnV E E B B≡ ≡ ≡ ≡
�� � � �

,  (2) 

We assume that Vx, Ex, Bz, and Jx are functions of y and t. 

This choice satisfies Maxwell’s equations. The distribution 

function F (y, c, t) of the particles for the plasma gas can be 

obtained from the kinetic Boltzmann’s equation, which can 

be written in the BGK (Bhatnager–Gross–Krook) model as: 
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for electrons, 

Where ( )2
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The quantities ,  and  n V Tαα α
��

are the number density, mean 

drift velocity, and effective temperature obtained by taking 

moments of Fα .  

The particles are reflected from the plate with a full 

velocity accommodation i. e., the plasma particles are 

reflected with the plate velocity so that the boundary 

conditions are: 
-

2 0(0,  )      0t
xV t U e for tβ= > , where 2       0 x x yV V as c= >  

and xV is finite as y → ∞  for electrons [5]. 

Substituting from Eqs. (1, 2) into Eq. (3) one obtains; 

0 0 0
0
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∂ ∂ ∂ ∂ ∂

,                  (4)

for electrons, where eeν , eiν  and enν  are electron-electron, 

electron-ion, and neutral-electron collision frequencies 

respectively, which are given by [ 23-24, 31]: 
4 4 2

3 3 3 3

2 2 2 2

4

3 3

2 2

4 [ ] 4 2 [ ]

3 3

4 [ ]

3

, ande ee i ei

e B e e B e

n e ee

e B e

n e Log n e Z Log

ee ei

m K T m K T

m n e Log

en

m K T

π π

π

ν ν

ν

Λ Λ

Λ

   
   

= =   
   
   

 
 =  
 
 

 (5) 



 Fluid Mechanics 2018; 4(1): 27-37 29 

 

where De Di Dλ λ λ= = , 3[ ] [4 ]DLog Log nπ λΛ = and Z are the 

Coulomb Logarithms and the degree of ionization 

respectively. 

The model of the cone of influence suggested by Lee’s 

moment method [25] for the solution of the Boltzmann’s 

equation is employed here. Let us write the solution of Eq. 

(4), as suggested by Kashmarov [7] in the form: 

3 2
12

1 y

3 2
22

2 y

(2 ) 1 exp     for c 0
2

(2 ) 1 exp     for c 0
2

x x

x x

c V c
F n RT

RT RT
F

c V c
F n RT

RT RT

π

π

−

−

  − 
 = + <        = 

  − = + >        

,   (6) 

where 1 2 and x xV V
 
are two unknown functions of time t and 

the single distance variable y. 

Using Grad's moment method [26] multiplying Eq. (4) by 

( )jQ c
�

 and integrating over all values of c
�

, we obtain the 

transfer equations for electrons in the form: 

0

0 0 0

( )

( ) ( ) ( )

j j jxe ze
j e y j e e x y
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                               (7) 

The integrals over the velocity distance are evaluated from 

the relation [8-10],  

0

1 2

0
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∞ ∞ ∞ ∞ ∞

−∞ −∞ −∞ −∞ −∞
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      (8) 

where ( ), 1,2j jQ Q c j= =�

 and x y zdc dc dc dc= , where 

,  and x y zc c c are the particles velocities components along x, 

y and z- axes, respectively. Moreover,  and E B  may be 

obtained from Maxwell's equation, for electrons 

0

1
0xe zeE B
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where ,    ,x xn Fdc nV c Fdc= =∫ ∫  
with the initial and 

boundary conditions: 

( ,0) ( ,0) 0      ,

( , ) and ( , )  are finite as y .

x z
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E y B y

E y t B y t

= = 
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      (11) 

We introduce the dimensionless variables defined by: 

( )

0

0
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                                        (12) 

For ��
� ≪ 1 (low Mach number), we can assume that the 

density and the temperature variation at each point of the 

flow and at any time are negligible, i. e.,	�� = 1 + �(��
�) 

and.�� = 1 + �(��
�) Let  

1 2

1
( )

2
x x xV V V= + , 

2 1

0

( )
/ 2

xy

xy x x

e

P
V V

U RT
τ

ρ π
= = − .  (13) 

Where xyP  is the shear stress [5, 7] defined by

( )xy x x yP m c V c Fdc= −∫  

Using the dimensionless variable, Eq. (7) for 1 xQ c=  and 

2 x yQ c c= become: 

0
xyexe

xe

V
E

t y

τ ′∂′∂ ′+ − =
′ ′∂ ∂

,                      (14) 

2 0
xye xe

xye

V

t y

τ
π τ

′∂ ′∂ ′+ + =
′ ′∂ ∂

.                  (15) 

with the initial and boundary conditions: 

1

1

( ,0) ( ,0) 0,                       

2 (0, ) (0, ) 2             

 and  are finite as y , .

x xy

t
x xy p

x xy ee

V y y

V t t M e
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β
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τ β βτ

′−
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      (16) 

For the sake of simplicity, henceforth, we drop the dash 

over the dimensionless variables. Therefore, we have the 
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following initial-boundary value problem for electrons 

(neglecting the displacement current) [22]: 

0
xyexe

xe

V
E

t y

τ∂∂
+ − =

∂ ∂
,                             (17) 

2 0
xye xe ee ei en
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With the initial and boundary conditions  

1

( ,0) ( ,0) ( ,0) ( ,0) 0 ,

2 (0, ) (0, ) 2  ,  for     0   ;      

 , ,  and   are finite as y .            
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We can reduce the basic Eqs. (17) - (20), after simple 

algebraic manipulations to a single equation: 

4 4 3 2

0 02 2 4 2 2

( , ) ( , ) ( , ) ( , ) ( , )
2 0xe xe xe xe xe

c c
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where 1 ei en
c

ee ee

A
ν ν
ν ν

 
= + + 
 

. 

Solution of the Initial-Boundary Value Problem 
We will use the traveling wave solution method [28-29] considering  

ly mtξ = − .                                                                                    (23) 

Such that to make all the dependent variables as functions ofξ . Here l and m are transformation constants, which do not 

depend on the properties of the fluid but as parameters to be determined by the boundary and initial conditions [28-29]. From 

Eq. (23) we get the derivatives:  

( ) , and 1  , 
a a a a

a a a

a a a a
m l m l

t y t yξ ξ ξ ξ
∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂= − = = − =
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,                                         (24) 

where a is a positive integer. 

Substituting from Eqs. (23-24) into Eqs. (22) to get: 
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0 04 3 2
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c c
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m l m ml A m mA
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The boundary and initial conditions become: 

1

( 0) ( 0) ( 0) 0,                            

2 ( ) ( ) 2  at 0 ,e.g., 1    
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xe ze xye

xe xye p
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−
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                                    (26) 

Now we have an ordinary differential Eq. (25) with the 

boundary and initial conditions (26).  

Exactly the help of symbolic computer software, with their 

boundary and initial conditions (26), can solve the ordinary 

fourth order homogeneous differential Eq. (25). The sought 

solutions will be applied to a typical model of laboratory 

Argon plasma. 

3. The Non-Equilibrium 

Thermodynamic Predictions of the 

Problem 

The application of Onsager's principle to a thermodynamic 

system as a whole or to an individual part of it (locally) is based 

on a representation of the entropy production as a finite sum of 

products of fluxes and forces. In addition, on linearity of the 

description of the nonequilibrium state of the system or its parts, 

this gives a linear connection between the fluxes and the forces. 

The symmetry of the coefficients of this connection constitutes 

Onsager's principle [11-15]. Local application of the principle to 

a fluid particle of the plasma gas requires its state to be near 

local equilibrium and its description by a finite set of 

macroscopic parameters. The problems of the thermodynamics 

of irreversible processes continue to present great importance. 

This is associated both with the general theoretical importance 

of this theory and its numerous applications in various branches 

of science. Starting from the essentials of the H-theorem, we 

begin with the evaluation of the entropy per unit mass S . It is 

written in dimensionless form as [11-15]: 
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2 22
1 1 2 2 1 2

3
ln ln ln ( )

2
e e e e e e x xS F F dc F F dc F F dc V Vπ  = − = − + = − + − 

 ∫ ∫ ∫ .                                (27) 

In addition, we get the entropy flux component in the y-direction: 

( )( ) 2 2
1 1 2 2 1 2ln ln ln ( )S

y y e e y e e y e e x xJ c F F dc c F F dc c F F dc V Vπ = − = − + = + ∫ ∫ ∫                                (28) 

The law of entropy production [8, 28] is written in the 

local form as: 

( )SS
J

t
σ ∂

= + ∇ •
∂

������

�

.                        (29) 

Following the general theory of irreversible 

thermodynamics we could estimate the thermodynamic force 

[6, 8, 10] corresponding to the plate Mach number, presented 

as a time dependent controlling parameter  

0 1
11 1

0 0

exp[ ]
exp[ ]

2 2

w
e

U U t
X Ma t

RT RT

β β−
= = = − .      (30) 

On the other hand, the relationship between the entropy 

production, thermodynamic fluxes and forces has the form [8, 

10]: 

l l

l

J Xσ =∑ .                                     (31) 

Near the thermodynamic equilibrium, the following linear 

relation between the fluxes and the forces holds: 

l lj jj
J L X=∑ , 

where ljL represent the so-called phenomenological 

coefficients, which have to fulfill the Onsager reciprocal 

relation, together with the condition of the Onsager's [10]: 

,   0lj jl llL L L= ≥ . 

In this study, this will be satisfied by the coefficient  

11 0L ≥ .                                     (32) 

To study the internal energy change for the system we 

introduce the extended Gibbs relation [32]. It includes the 

electromagnetic field energy as a part of the whole energy 

balance, which distinguish the charged gas into paramagnetic 

and diamagnetic ones. According to whether if there are 

unpaired electrons in the molecular orbital diagram, the gas is 

paramagnetic, or if all electrons are paired, the gas is considered 

as a diamagnetic one. To get the work term in the first law of 

thermodynamics, we should write the internal energy balance 

including the electromagnetic field energy as follows: 

A) For paramagnetic plasma; the internal energy change is 

expressed in terms of the extensive quantities S, P and M, which 

are the thermodynamic coordinates corresponding to the 

conjugate intensive quantities T, E and B respectively. The three 

contributions in the internal energy change in the Gibbs formula: 

dU = dUS + dUpol+ dUpaα,                    (33) 

where 

dUS=TdS is the internal energy change due to variation of 

the entropy,  

dUpol=E dP is the internal energy change due to variation 

of polarization, and 

dUpara=B dM is the internal energy change due to the 

variation of magnetization, here m is calculated from the 

equation [3, 29] 

t

S B T S
M dy

m T B y

 ∂ ∂
= − ⇒ = −  ∂ ∂ 

∫ .           (34) 

Introducing the dimensionless variables 

1 1
, ,

ei Te ee Te

U
U M M p p

KT e V e Vτ τ
   

′ ′ ′= = =   
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 in the Gibbs formula to 

get (after dropping the primes)  

1 1dU dS f E dp f B dM= + + .            (35) 

B) On the other hand, if the plasma is diamagnetic; the 

internal energy change due to the extensive variables S, P 

and B represent the thermodynamic coordinates conjugate to 

the intensive quantities T, E and M respectively, therefore we 

have three contributions in the internal energy change in the 

Gibbs formula given by: 

dU = dUS + dUpol + dUdia,                      (36) 

where dUdia = -M dB is the internal energy change due to the 

variation of the induced magnetic induction, where 

S
M T

B

∂
=

∂
 [6, 32]. 

Hence, the dimensionless form for dU in this case takes 

the form:  

1 1dU dS f Edp f M dB= + − ,                (37) 

where 
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2

1
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e Tem V
f

KT

 
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,          
S S

dS y t
r t

δ δ∂ ∂   = +   ∂ ∂   
;   0.01 ,    0.01y tδ δ= = . 

4. Results and Discussions  

In this problem, the unsteady behavior of a rarefied 

electron gas is studied based on the kinetic theory of 

irreversible processes using the exact traveling wave 

analytical solution method via the BGK model of the 

Boltzmann equation with the exact value of electro-electron 

collision frequency. Those computations are performed 

according to typical data for electron gas in Argon plasma 

[32, 33, 34] as a paramagnetic medium in the case where the 

argon gas loses single electrons or as a diamagnetic medium 

in the case where the argon gas loses electron pairs, 

depending on the ionizing potential applied to the argon 

atoms. The following conditions and parameters apply: 
-16 11 -3

0

-8

1.3807 10 erg/K,  1200 K,    7 10 cm ,  

 3.84  10 cm 

B eK T n

d

= = =

=
 

(diameter of the Argon atom), the electron rest mass and 

charge -28 -10 9.093 10 ,  4.8 10   em gm e esu= × = are used to 

calculate the dimensionless parameter 5
0 9.58 10  α −= × , the 

electron-electron collision relaxation time -91.15 10eeτ = ×  and 

the mean free path of the electron gas 2

1

2 en d
λ

π
=  

2
2.180 10 cm= compared to the electron Debye length 

-50

2
2.85 10   

4

B
De

e

K T
cm

n e
λ

π
= = , 1 1.66667f = . Using the idea of the 

shooting numerical calculation method, we evaluate the 

transformation constants to obtain 1,  0.8m l= =  and the 

plate Mach number 1
10Ma

−= . 

All the variables of the problem satisfy the initial and the 

boundary conditions, Eq.(21), of the problem, see Figures (2, 

3, 5, 6). This cannot be exactly examined in the previous 

study [6], because of the discontinuity in the. 

Figure (1) shows that the deviation from equilibrium is 

small and in a course of time the perturbed velocity 

distribution functions 1 2 and F F  approach to equilibrium 

velocity distribution function 
0F  as (y=0.001), i. e. in the 

region near the moving plate, which represents the region 

that we are interested for studying. This gives a good 

agreement with the famous Le Chatelier principle. Figure (2) 

illustrated that, the mean velocity of electrons, near the 

moving plate, has a maximum value equal the Mach number 

(=Ma) of the plate, which satisfies the condition of the 

problem. The behavior of the shear stress compatibles with 

the behavior of the velocity itself, see Figure (3). 

The viscosity coefficient [30] for a rarefied gas in a slaw 

fellow is 
xy

xV
y

τ
µ =

∂
∂

. Its behavior is represented in Figure (4), 

which shed light upon the resistant to the motion, which 

increases with time. This is because if any change is imposed 

on a system that is in equilibrium then the system tends to 

adjust to a new equilibrium counteracting the change. Near 

the moving plate, Figures (5, 6) indicate the behavior of the 

self-generated fields. The induced electric field decreases 

with time while the induced magnetic field increases with it 

adjacent to the plate. The induced electric field increases with 

time while the induced magnetic field decreases with it far 

from the plate. Clearly, they satisfy the conditions of the 

problem.  

The entropy S increases with time, which gives a good 

agreement with the second law of thermodynamics, see Figure 

(7). The entropy production behavior is fulfilled the famous 

Boltzmann H-Theorem, where ( 0)σ ≥ for all values of y and t, 

see Figure (8). The thermodynamic force, corresponding to the 

velocity of the moving plate, has a maximum value equal the 

Mach number (=Ma) of the plate, which satisfies the 

condition of the problem., see Figure (9).  

Upon passing through a plasma, a charged particle 

(electron) looses (or gains) part of its energy because of the 

interaction with the surroundings because of plasma 

polarization and collisions [35]. The energy loss (or gain) of 

an electron is determined by the work of the forces acting on 

the electrons in the plasma by the electromagnetic field 

generated by the moving particle itself, since the suddenly 

moving plate causes work to be done on the gas, changing 

the internal energy of the gas U. As seen in Figures (10–13), 

the change in the internal energy due to the variation of 

entropy and paramagnetic is smoothly dampened with time 

by energy lost to and gained from the ions and plate, 

respectively. While the change in internal energy increases 

gradually with time because of the intensive variables, 

corresponding to either polarization or diamagnetic plasma. 

6. Conclusions 
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Figure 1. The comparison between the combined perturbed velocity 

distribution functions for electrons Fe [F1 (gray), F2 (black)] and electrons 

equilibrium velocity distribution function Fo (grid) at (t = 0.001, 1.25 and 

2.5 ) for a fixed y value (0.001) with the Mach number of the plate Ma = 0.1. 

 

Figure 2. The velocity xV versus space y and time t. 

 

Figure 3. The shear stress xyτ versus space y and time t. 

 
Figure 4. The viscosity coefficient versus space y and time t. 

 
Figure 5. The induced electric field versus space y and time t. 

 
Figure 6. The induced magnetic field versus space y and time t. 

 
Figure 7. Entropy S versus space y and time t. 
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Figure 8. Entropy production σ  versus space y and time t. 

 
Figure 9. thermodynamic force X11 versus space y and time t. 

 

Figure 10. Internal energy change dUS versus space y and time t. 

 

Figure 11. Internal energy change dUpol versus space y and time t. 

6. Conclusions 

The solution of the unsteady BGK Boltzmann kinetic 

equation in the case of a rarefied electron gas using the method 

of the moments of the two-sided distribution function together 

with Maxwell’s equations is developed within the travilling 

wave exact solution method and the exact value of electron-

electron, electron-ion and electron-neutral collision frequencies. 

This solution allows for the calculation of the components of the 

velocity of the flow. By inserting them into the suggested two-

sided distribution functions and applying the Boltzmann H-

theorem, we can evaluate the entropy, entropy production, 

thermodynamic force, and kinetic coefficient. Via Gibbs’ 

equations, the ratios between the different contributions of the 

internal energy change are evaluated based upon the total 

derivatives of the extensive parameters. The predictions, 

estimated using Gibbs’ equations, reveal the following order of 

maximum magnitude ratios between the different contributions 

to the internal energy change, based on the total derivatives of 

the extensive parameters: 

4 3
 :   :   = 1 :  10  :  10S pol diadU dU dU

− −
 

4 3
 :   :   = 1 :  10  :  10S pol pardU dU dU

− −
 

It is concluded that the effect of the changes of the internal 

energies ,  ,  and pol dia pardU dU dU due to electric and 

magnetic fields are very small in comparison with dUS, in 

recognition of the fact that these fields are self-induced by 

the sudden motion of the plate. 
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Figure 12. Internal energy change dUdia versus space y and time t. 

 

Figure 13. Internal energy change dUpar versus space y and time t. 
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Nomenclature 

B
�

 The induced magnetic field vector  

B The induced magnetic field 
E
�

 The induced electric vector 

E The induced electric field 

F The velocity distribution function 

F0 The local Maxwellian distribution unction 

F1 Distribution function for going downward particles cy < 0 

F2 Distribution function for going upward particles cy >0 

J The current density 

Jy
(S)

 The entropy flux component along y-axis direction 

KB Boltzmann constant (Erg/K°) 1.38 10
-16

 

L11 The kinetic coefficient  

Ma The plate Mach number  

M Specific magnetization  

P Polarization 

R The gas constant 

S Entropy per unit mass  

T The temperature 

U The internal energy of the gas 

U 0 Plate initial Velocity  

Vx The mean velocity 

Vx1 The mean velocity related to F1 

Vx2 The mean velocity related to F2 

V Gas volume  

Te
V  Thermal velocity of electrons 

Ti
V  Thermal velocity of ions 

X11 Thermodynamic force  

c0 The speed of light 

c The velocity of the particles  

d particle diameter 

e The electron charge 
f
�

 Lorantz's force vector 

me electron mass 

mi ion mass 

n The mean density 

ne electrons concentration  

ni ions concentration  

p Pressure 

r
�

 The position vector of the particle 

t time variable  

u
�

 The mean velocity of the particle  

dUS The internal energy change due to the variation of entropy  

dUPol The internal energy change due to the variation of polarization  

dUpar The internal energy change due to the variation of magnetization  

dUdia The internal energy change due to the variation of the induced magnetic field 

y displacement variable 

Z Ionization 

Superscripts  

' Dimensionless variable 

Subscripts 

e Related to electrons 

i Related to ions 

eq Equilibrium  

Greek letters  
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τ The relaxation time  

τxy The shear stress 

µ Viscosity coefficient  

λ The mean free path 

α0 Dimensionless parameter  

β Damping constant 

ν Collision frequency 

ε Mass ratio 

λ mean free path 

λD Debye radius 
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